Англо-русский словарь и русско-английский словарь онлайн

Создать акаунт
Где искать:
Толковые словари
Большая советская энциклопедия

Результаты поиска (1-15 из 76)

Анализ Искать примеры произношения
(от греч. análysis - разложение, расчленение)

процедура мысленного, а часто также и реального расчленения предмета (явления, процесса), свойства предмета (предметов) или отношения между предметами на части (признаки, свойства, отношения); процедурой, обратной А., является Синтез, с которым А. часто сочетается в практической или познавательной деятельности. Аналитические методы настолько распространены в науке, что термин "А." часто служит синонимом исследования вообще как в естественных, так и в общественных науках (количественный и качественный А. в химии, диагностические А. в медицине, разложение сложных движений на составляющие в механике, функциональный А. в социологии и т. д.). Процедуры А. входят органической составной частью во всякое научное исследование и обычно образуют его первую стадию, когда исследователь переходит от нерасчленённого описания изучаемого объекта к выявлению его строения, состава, а также его свойств, признаков. Но и на других ступенях познания А. сохраняет своё значение, хотя здесь он выступает уже в единстве с др. процедурами исследования. Аналитические процедуры являются одними из главных не только в научном мышлении, но и во всякой деятельности, поскольку она связана с решением познавательных задач. Как познавательный процесс А. изучается психологией, рассматривающей его как психический процесс, который осуществляется на различных уровнях отражения действительности в мозгу человека и животных, а также теорией познания и методологией науки, которые рассматривают А. прежде всего как один из приёмов (методов) получения новых познавательных результатов.

А. присутствует уже на чувственной ступени познания и, в частности, включается в процессы ощущения и восприятия; в своих более простых формах он присущ животным. Однако аналитико-синтетическая деятельность даже высших животных непосредственно включена в их внешние действия. У человека к чувственно-наглядным формам А. присоединяется высшая форма А. - мыслительный, или абстрактно-логический, А. Эта форма возникла вместе с навыками материально-практического расчленения предметов в процессе труда; по мере усложнения последнего человек овладевал способностью предварять материально-практический А. мыслительным. Развитие производственной деятельности, мышления и языка, приёмов научного исследования и доказательства привело к появлению разных форм мыслительного А., в частности расчленения предметов на неотделимые от них признаки, свойства, отношения. В отличие от чувственно-наглядного, мыслительный А. совершается с помощью понятий и суждений, выражаемых в естественных или искусственных языках (знаковых системах науки). С др. стороны, и сам А., вместе с др. приёмами, служит средством формирования понятий о действительности .

Существует несколько видов А. как приёма научного мышления. Одним из них является мысленное (а часто, например в эксперименте, и реальное) расчленение целого на части. Такой А., выявляющий строение (структуру) целого, предполагает не только фиксацию частей, из которых состоит целое, но и установление отношений между частями. При этом особое значение имеет случай, когда анализируемый предмет рассматривается как представитель некоторого класса предметов: здесь А. служит установлению одинаковой (с точки зрения некоторых отношений) структуры предметов класса, что позволяет переносить знание, полученное при изучении одних предметов, на другие. Другим видом А. является А. общих свойств предметов и отношений между предметами, когда свойство или отношение расчленяется на составляющие свойства или отношения; одни из них подвергаются дальнейшему А., а от других отвлекаются; на следующем этапе А. может подвергнуться то, от чего ранее отвлеклись, и т.д. В результате А. общих свойств и отношений понятия о них сводятся к более общим и простым понятиям. Видом А. является также разделение классов (множеств) предметов на подклассы - непересекающиеся подмножества данного множества. Такого рода А. называют классификацией (См. Классификация). Все эти и др. виды А. применяются как при получении нового знания, так и при систематическом изложении уже имеющихся научных результатов. А. широко используют также в педагогическом процессе.

Описанному смыслу понятия А. родственно более специальное понятие формально-логического (логического) А. Логический А. - это уточнение логической формы (строения, структуры) рассуждения, осуществляемое средствами современной формальной логики. Такое уточнение может касаться как рассуждений (логических выводов, доказательств, умозаключений и т. п.) и их составных частей (понятий, терминов, предложений), так и отдельных областей знания. Наиболее развитой формой логического А. содержательных областей знания, содержательных понятий и способов рассуждения является построение формальных систем, интерпретируемых на этих областях или с помощью данных понятий, - т. н. формализованных языков. Логический А. - один из основных познавательных приёмов науки, значение которого особенно возросло благодаря развитию математической логики, кибернетики, семиотики и разработке информационно-логических систем (см. Формализация).

В ином смысле понимается А. в истории математики. Здесь А. - это рассуждение, идущее от того, что подлежит доказательству (от неустановленного, неизвестного), к тому, что уже доказано (установлено ранее, известно); под синтезом же понимается рассуждение, идущее в обратном направлении. А. в этом смысле является средством выявления идеи доказательства, но в большинстве случаев сам по себе доказательством ещё не является. Синтез же, опираясь на данные, найденные в А., показывает, как из ранее установленных утверждений вытекает доказываемое, даёт доказательство теоремы или решение задачи.

Лит.: Мамардашвили М. К., Процессы анализа и синтеза, "Вопросы философии", 1958, № 2; Проблемы мышления в современной науке, М., 1964; Горский Д. П., Проблемы общей методологии наук и диалектической логики, М., 1966; Петров Ю. А., Гносеологическая роль формализованных языков, в кн.: Язык и мышление, М., 1967.

Б. В. Бирюков.

Автоматический анализ Искать примеры произношения

текста (АА), операция, которая заключается в том, что из данного текста на естественном языке извлекается содержащаяся в этом тексте грамматическая и семантическая информация, выполняемая по некоторому Алгоритму в соответствии с заранее разработанным описанием данного языка. Обратная операция называется автоматическим синтезом (См. Автоматический синтез) текста. АА подразделяется на три этапа:

1 ) лексико-морфологический - переход от отдельной словоформы к её лексико-грамматической характеристике;

2) синтаксический - переход от цепочки лексико-грамматических характеристик, представляющих фразу, к её синтаксической структуре;

3) семантический - переход от синтаксически проанализированной фразы к её смысловой записи. В алгоритме АА обычно различают сведения о языке ("грамматика") и сведения о самом процессе анализа ("механизм", или собственно алгоритм АА). АА является необходимым этапом в разных видах автоматической обработки текстов: автоматического перевода, автоматического реферирования, информационного поиска и т. п. АА следует отличать от автоматического исследования текстов, при котором полностью (или почти полностью) отсутствуют сведения о языке текста и текст обрабатывается алгоритмом именно с целью построения описания языка.

Лит.: Мельчук И. А., Морфологический анализ при машинном переводе (преимущественно на материале русского языка), в сборнике: Проблемы кибернетики, в. 6, М., 1961, с. 207-276; Dupuis L., Un système morphologique..., "Information Storage and Retrieval", 1964, v. 2, № 1, с. 29-41; Мельчук И. А., Автоматический синтаксический анализ, т. 1, Новосибирск, 1964; Иорданская Л. Н., Автоматический синтаксический анализ, т. 2, Новосибирск, 1967; Hays D. G., Readings in automatic language processing, N. Y., 1966; Vauquois B., VeilIon G., Veyrunes J., Syntax and interpretation, "Mechanical Translation", 1966, v. 9, № 2, p. 44-54; Жолковский А. К., Леонтьева Н. Н., Мартемьянов Ю. С., О принципиальном использовании смысла при машинном переводе, в кн.: Машинный перевод, в. 2, М., 1961, с. 17-46.

И. А. Мельчук.

Агрохимический анализ Искать примеры произношения

определение лабораторными методами химического состава растений, кормов растительного происхождения (см. Кормов анализ), почвы (см. Почвы анализ), удобрений, пестицидов (ядохимикатов). А. а. проводят агрохимические лаборатории (См. Агрохимическая лаборатория).

В результате анализа растений определяют содержание макро- и микроэлементов (азот, фосфор, калий, кальций, магний, сера, железо, бор, марганец, медь, молибден, цинк, кобальт и др.), получаемых растением из почвы; важнейшие органические соединения (белки, жиры, углеводы, витамины, аминокислоты и др.), характеризующие качество кормов и многих др. растительных продуктов (в сахарной свёкле, например, определяют содержание сахара, в картофеле - крахмала, в зерне пшеницы - белка и т. д.). Анализ удобрений и пестицидов необходим преимущественно в контрольных целях.

В минеральных и местных удобрениях определяют содержание и формы питательных веществ; в суперфосфате, кроме того, устанавливают кислотность; в известковых удобрениях - содержание кальция и магния; в торфе - влажность, зольность, кислотность, степень разложения; в пестицидах - процент действующих химических соединений (убивающих сорные растения, отравляющих насекомых-вредителей и возбудителей бактериальных, грибных, вирусных заболеваний с.-х. культур).

В А. а. пользуются различными методами анализа; всё шире применяются спектрофотометрия, пламенная фотометрия, стабильные и радиоактивные изотопы и др. методы, позволяющие намного повысить производительность труда аналитиков и точность определений. См. также Агрохимическая служба.

Лит.: Петербургский А. В., Практикум по агрономической химии, 6 изд., М., 1968.

А. В. Петербургский.

Активационный анализ Искать примеры произношения

метод определения качественного и количественного состава вещества, основанный на активации атомных ядер и измерении их радиоактивного излучения. Впервые применен венгерскими химиками Д. Хевеши и Г. Леви в 1936. При проведении А. а. исследуемый материал в течение некоторого времени облучают (активируют) ядерными частицами (нейтроны, протоны, дейтроны, α-частицы и т. д.) или жёсткими γ-лучами, а затем с помощью специальной аппаратуры определяют вид и активность каждого из образующихся радиоактивных изотопов. Каждый радиоактивный изотоп обладает своими, свойственными только ему одному, характеристиками: периодом полураспада Т1/2 и энергией излучения Еизл, которые никогда не совпадают с аналогичными характеристиками др. изотопов; эти характеристики собраны в таблицы. Поэтому, если определить вид излучения и измерить Еизл и (или) Т1/2 изотопов, присутствующих в активированном образце, то по таблицам можно провести их идентификацию (т. е. установить порядковый номер и массовое число). Ядерные реакции, которые при выбранном способе активирования приводят к образованию тех или иных радиоактивных изотопов, обычно хорошо известны, и с их помощью легко найти, из каких исходных изотопов образовались обнаруженные в активированном образце радиоактивные изотопы, т. е. определить исходный состав исследуемого материала.

Для проведения количественного А. а. используют то обстоятельство, что активность радиоактивного изотопа после облучения образца пропорциональна числу ядер исходного изотопа, участвовавшего в ядерной реакции. Количественный А. а. может быть выполнен абсолютным или относительным способом. В первом случае измеряют абсолютную активность изотопа и, зная факторы, от которых зависит её значение, - время облучения, число активирующих частиц, проходящих через образец в единицу времени, эффективное сечение ядерной реакции (оно характеризует вероятность протекания ядерной реакции), изотопный состав химического элемента, Т1/2 образующегося радиоактивного элемента и время, прошедшее после прекращения облучения до момента измерения активности, - рассчитывают исходное содержание анализируемого элемента. Точность абсолютного метода невелика (20-50% ), а выполнение его связано с рядом трудностей, поэтому он не получил широкого распространения. Во 2-м случае вместе с исследуемым образцом в строго идентичных условиях облучают специально приготовленный эталон или серию эталонов, содержание определяемого элемента в которых точно известно. Далее сравнивают активность образца с активностями эталонов и, учитывая, что количество радиоактивных атомов, образующихся при облучении, пропорционально содержанию исследуемого элемента, находят требуемое значение (при использовании серии эталонов определение обычно ведут по калибровочной кривой зависимости активности от содержания анализируемого элемента). Если таким путём необходимо определить в образце содержание нескольких элементов, то сравнивают активность каждого из активированных в образце изотопов с активностями соответствующих эталонов.

Для определения качественного и количественного состава с помощью А. а. можно применять инструментальный или радиохимический метод. Инструментальный А. а. заключается в исследовании излучения образовавшихся радиоактивных изотопов с помощью радиотехнической аппаратуры, обычно с использованием сцинтилляционных датчиков. Он проводится без разрушения образца, отличается экспрессностью, малой трудоёмкостью и экономичностью, но чувствительность его часто ниже, чем радиохимического метода. Радиохимический А. а. состоит в химическом разделении активированных элементов и определении активности каждого из них. Он пригоден для одновременного определения большого числа различных элементов, но требует больших затрат времени на выполнение химических операций.

Из-за того, что ядра многих изотопов легче всего активируются нейтронами, источники которых достаточно разнообразны и доступны, а А. а. на нейтронах обладает высокой чувствительностью, нейтронный А. а. получил наибольшее распространение по сравнению с А. а. на др. ядерных частицах или γ-лучах. Различия эффективных сечений отдельных изотопов в ядерных реакциях с нейтронами достигают сотен тысяч раз и более, поэтому нейтронный А. а. обладает высокой специфичностью. С помощью нейтронного А. а. определяют следовые количества примеси в материалах, используемых в реакторо- и ракетостроении (например,10-4% гафния в цирконии), в полупроводниковой технике (чувствительность нейтронного А. а. на мышьяк, присутствие которого в германиевых транзисторах должно быть строго ограничено, достигает 10-10 - 10-11 г) и т. д. Нейтронный А. а. пригоден для определения таких редких элементов, как золото при содержании до 10-9 - 10-10% и платина (до 10-5 - 10-6% ).

Пример: определение с помощью нейтронного А. а. процентного содержания марганца в алюминиевом сплаве. Природный марганец состоит только из одного изотопа 56Mn, а алюминий - только из изотопа 27Al. При облучении нейтронами эти изотопы дают соответственно β-активные 57Mn с Т1/2 = 2,58 ч. и 28Al с Т1/2 = 2,3 мин. Из-за малости Т1/2 28Al практически нацело распадается через 15-20 мин после прекращения облучения, и активность сплава будет определяться присутствием в нём 57Mn. Если одновременно с анализируемым образцом провести в строго аналогичных условиях активирование ряда эталонов, процентное содержание марганца в которых известно, а затем измерить активность эталонов и исследуемого сплава, которую они будут иметь через определённый промежуток времени после облучения, то, построив кривую зависимости активности от процентного содержания марганца в сплавах, легко по активности анализируемого сплава найти требуемую величину. Чувствительность определения будет тем выше, чем больше используемый нейтронный поток и эффективность измерения активности на аппаратуре.

Распространение получил и А. а., основанный на ядерных реакциях, протекающих под действием γ-излучения. Так, измеряя поток нейтронов, испускаемых анализируемым образцом после облучения его γ-лучами, удаётся определить присутствие 10-4% бериллия в пробе массой 100 г. Определение лёгких элементов, изотопы которых плохо активируются нейтронами (углерод, азот, кислород), может быть проведено путём измерения излучения изотопов, образующихся в результате облучения жёсткими γ-лучами ядер соответственно 12C, 14N и 16O. А. а. на заряженных ядерных частицах (протоны, дейтроны, (α-частицы и др.) также даёт в ряде случаев удовлетворительные результаты. Например, с помощью ускоренных протонов удаётся определить до 10-7% бора в кремнии, 10-5% ниобия в тантале и т. д. Однако из-за отсутствия удобных источников излучений и ряда др. факторов этот метод А. а. пока не получил такого широкого распространения, как нейтронный А. а.

Большое преимущество любого вида А. а. - отсутствие опасности загрязнения анализируемого вещества примесями, содержащимися в химических реактивах. Возможность анализа образцов без разрушения позволяет использовать А. а. для контроля чистоты готовых изделий, в криминалистике, археологии и т. д. Недостатки А. а. связаны главным образом с тем, что не все элементы хорошо активируются, и с необходимостью использовать дорогостоящее оборудование и соблюдать специальные меры предосторожности.

Лит.: Тейлор Д., Нейтронное излучение и активационный анализ, пер. с англ., М., 1965; Плаксин И. Н., Старчик Л. П., Ядерно-физические методы контроля вещественного состава. Ядерные реакции и активационный анализ, М., 1966; Кузнецов Р. А., Активационный анализ, М., 1967.

С. С. Бердоносов.

Анализ звука Искать примеры произношения
Анализ математический Искать примеры произношения

совокупность разделов математики, посвященных исследованию функций методами бесконечно малых. А. м. возник (в систематической форме) в трудах И. Ньютона, Г. Лейбница, Л. Эйлера и др. математиков 17-18 вв. Обоснование А. м. при помощи понятия предела принадлежит О. Коши. В настоящее время термин "А. м." является скорее педагогическим, чем научным. Курс А. м. для математических специальностей в университетах СССР содержит следующие разделы: введение в анализ (функция, предел, непрерывность), дифференциальное исчисление, интегральное исчисление и теория рядов (включая степенные ряды и ряды Фурье). В преподавание А. м. всё более и более проникают идеи топологии (См. Топология) и функционального анализа (См. Функциональный анализ).

Лит.: Ла Валле Пуссен Ш. Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1-2, Л.-М., 1933; Хинчин А. Я., Краткий курс математического анализа, 3 изд., М., 1957; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 6 изд., т. 1-3, М., 1966.

С. Б. Стечкин.

Анализ почвы Искать примеры произношения
Анализ углей Искать примеры произношения

комплекс методов для определения состава и свойств углей. В технический анализ входит определение влажности, зольности, выхода летучих, серы, теплоты сгорания. Для специальных целей определяют: 1) содержание фосфора (для металлургии); 2) пластометрическую усадку и толщину пластичного слоя (для коксования); 3) выход продуктов сухой перегонки; 4) плавкость золы (для топливных углей). При геологоразведочных работах определяют элементарный состав угля, петрографическую характеристику и др. В А. у. входят отбор и подготовка проб.

Анализ химический Искать примеры произношения
Арбитражный анализ Искать примеры произношения

контрольный анализ, который проводят в случае возникновения разногласий между поставщиком и потребителем в оценке качества поставленной продукции и соответствия её нормам ГОСТ или Технических условий. А. а. проводит лаборатория, не заинтересованная в споре, выбранная спорящими сторонами по взаимному соглашению.

Весовой анализ Искать примеры произношения
Газовый анализ Искать примеры произношения

анализ смесей газов с целью установления их качественного и количественного состава. Различают химические, физико-химические и физические методы Г. а. Химические методы основаны на поглощении компонентов газовой смеси различными реагентами. Так, углекислый газ поглощают раствором щёлочи, кислород - щелочным раствором Пирогаллола, ненасыщенные углеводороды - бромной водой. О количестве газа судят по уменьшению его объёма. Достоинство химических методов Г. а. - простота конструкции приборов (газоанализаторов) и выполнения анализа. В физико-химических методах Г. а. компоненты газовой смеси поглощают раствором соответствующего реагента и измеряют электрическую проводимость (см. Электрохимические методы анализа), оптическую плотность (см. Колориметрия) или др. физико-химическую характеристику раствора. Для определения состава смесей углеводородов широко применяют метод хроматографического адсорбционного анализа (см. Хроматография). Физические методы Г. а. основаны на измерении плотности, вязкости, температуры кипения, теплопроводности, поглощения и испускания света (см. Спектральный анализ), масс-спектров (см. Масс-спектроскопия) и др. физических свойств газовой смеси, зависящих от её состава.

Существенные преимущества физико-химических и физических методов Г. а. перед химическими - быстрота выполнения, возможность автоматизации анализа - обусловили их широкое распространение в различных отраслях промышленности. Г. а. применяют для установления состава природных и промышленных газов, контроля технологических процессов в металлургической, химической, нефтяной и газовой промышленности, определения токсичных, легко воспламеняющихся или взрывоопасных газов в воздухе производственных помещений. О приборах для Г. а. см. Газоанализаторы см. также лит. при этой статье.

В. В. Краснощекое.

Гармонический анализ Искать примеры произношения

отдел математики, связанный с разложением колебаний на Гармонические колебания. При изучении периодических (т. е. повторяющихся во времени) явлений рассматриваются периодические функции (См. Периодическая функция). Например, гармоническое колебание описывается периодической функцией времени t::

A sin (ωt + φ), называется гармоникой. Основная задача Г. а. состоит в расщеплении периодической функции на простейшие гармонические составляющие, т. е. в представлении периодической функции в виде тригонометрического ряда (см. Фурье ряд).

Генетический анализ Искать примеры произношения

совокупность методов изучения наследственных свойств организмов. Г. а. включает: 1) Гибридологический метод, изучающий законы наследственности, а также строение и поведение наследственных структур с помощью специальных видов скрещиваний (см. Гибридологический анализ). 2) Цитогенетический метод, развившийся на стыке генетики и цитологии. Главная его задача - установление связи между закономерностями наследования и строением и функциями хромосом (См. Хромосомы) (составление цитологических карт хромосом (См. Цитологические карты хромосом), Геномный анализ и др.). 3) Молекулярно-генетический метод, получивший развитие в связи с новыми биохимическими и физико-химическими методами анализа наследственных структур. С его помощью изучается связь между молекулярным строением Генов и синтезируемыми в соответствии с заложенной в них информацией белками (См. Белки).

Лит.: Серебровский А. С.. Генетический анализ, М., 1970 (библ.).

Ю. С. Демин.

Геномный анализ Искать примеры произношения

анализ происхождения различных Геномов у полиплоидных форм посредством скрещиваний между предполагаемыми родительскими формами с последующей полиплоидизацией (см. Плоидность, Полиплоидия). Один из цитогенетических методов; предложен японским цитогенетиком Х. Кихарой (1924). При подборе пар для скрещивания ориентируются на морфологические признаки, общие для обоих партнёров и изучаемой аллополиплоидной формы (см. Аллополиплоидия). После скрещивания и полиплоидизации проводят точный хромосомный анализ и анализ процесса Мейоза.

Конъюгация хромосом служит показателем родства геномов. Отсутствие конъюгации свидетельствует о принадлежности хромосом к разным геномам.



Словари, в которых найден искомый текст:
 Большая советская энциклопедия (76)
 Толковый словарь Ефремовой (2)
 Словарь иностранных слов (1)
 Современный толковый словарь (44)
 Толковый словарь русского языка Ушакова (1)
 Кольер (8)
 Словарь медицинских терминов (24)
 Толковый словарь живого великорусского языка В.Даля (1)
 Словарь Ожегова (1)
 Энциклопедия Брокгауза и Ефрона (1)


Примеры употребления слова "АНАЛИЗ" в русскоязычной прессе:

1.    АНАЛИЗ Сколько раз В. (АиФ, 2005-06-01)

2.   Для контроля за своими сосудами регулярно сдавайте анализ крови на холестерин. При малейшем подозрении на образование тромбов нужно пройти ультразвуковое сканирование сосудов или компьютерную томографию. (АиФ, 2005-06-01)

3.    АНАЛИЗ Гидрометцентр выдал прогноз на лето - оно будет жарким. (АиФ, 2005-06-01)

4.   Войдя в зал, председательствующая судья Ирина Колесникова села и тут же продолжила излагать анализ представленных на процессе доводов защиты. (Время новостей, 2005-06-01)

5.   Но для того, чтобы начать свою личную войну с этой болезнью, необходимо пройти обследования: сделать общий анализ крови и мочи; биохимический анализ крови - прежде всего нас интересует уровень креатинина (отражает функцию почек), калия, кальция, уровень глюкозы в крови; тест на гормоны; обязательны ЭКГ и исследование глазного дна; липидный профиль (анализ на холестерин). *** ВНИМАНИЕ! (Комсомольская правда, 2005-06-01)

Еще примеры >>

Недвижимость в Испании
Еще>>