Англо-русский словарь и русско-английский словарь онлайн

Создать акаунт
Где искать:
Толковые словари
Большая советская энциклопедия

Результаты поиска (1-15 из 19)

Астрономия Искать примеры произношения
I Астроно́мия (греч. astronomía, от Астро... и nómos - закон)

наука о строении и развитии космических тел, их систем и Вселенной в целом.

Задачи и разделы астрономии. А. исследует тела Солнечной системы, звёзды, галактические туманности, межзвёздное вещество, нашу Галактику (систему Млечного Пути), другие галактики, их распределение в пространстве, движение, физическую природу, взаимодействие, происхождение и развитие. А. изучает и разрабатывает способы использования наблюдений небесных тел для практических нужд человечества. Таковы служба времени, определение географических координат и азимутов на земной поверхности, изучение фигуры Земли по наблюдениям искусственных спутников Земли, ориентация искусственных спутников и космических зондов по звёздам и т. п. А. способствует выработке правильных материалистических представлений о мироздании. А. тесно связана с другими точными науками, прежде всего - с математикой, физикой и некоторыми разделами механики, используя достижения этих наук и, в свою очередь, оказывая влияние на их развитие. В зависимости от предмета и методов исследований А. разделяется на ряд дисциплин (разделов). Астрометрия занимается построением основной инерциальной системы координат для астрономических измерений, определением положений и движений небесных объектов, изучением закономерностей вращения Земли и исчислением времени, определением значений фундаментальных астрономических постоянных; к ней относятся также Сферическая астрономия, включающая математические методы определения видимых положений и движений небесных объектов, и Практическая астрономия, посвященная теории угломерных инструментов и применению их для определения времени, географических координат (широты и долготы) и азимутов направлений. Небесная механика (теоретическая А.) изучает движения небесных тел, в том числе и искусственных (Астродинамика) под влиянием всемирного тяготения, а также фигуры равновесия небесных тел. Звёздная астрономия рассматривает систему звёзд, образующую нашу Галактику (Млечный Путь), а Внегалактическая астрономия - другие галактики и их системы. Астрофизика, включающая астрофотометрию, астроспектроскопию и другие разделы, исследует физические явления, происходящие в небесных телах, их системах и в космическом пространстве, а также химические процессы в них. Радиоастрономия изучает свойства и распределение в пространстве космических источников излучения радиоволн. Создание искусственных спутников Земли и космических зондов привело к возникновению имеющей большое будущее внеатмосферной астрономии (См. Внеатмосферная астрономия). Космогония занимается вопросами происхождения как отдельных небесных тел, так и их систем, в частности Солнечной системы, а Космология - закономерностями и строением Вселенной в целом.

Астрономия в древности. А. возникла в глубокой древности в результате потребности людей определять время и ориентироваться при путешествиях. Уже простейшие наблюдения небесных светил невооружённым глазом позволяют определять направления как на суше, так и на море, а изучение периодических небесных явлений легло в основу измерения времени и установления системы календаря (См. Календарь), позволяющего предвидеть сезонные явления, что было важно для практической деятельности людей.

Астрономические знания Др. Китая дошли до нас в очень неполном и часто искажённом виде. Они состояли в определении времени и положения среди звёзд точек равноденствий и солнцестояний и наклонения эклиптики к экватору. В 1 в. до н. э. уже были известны точные синодические периоды движения планет. В Индии была составлена система летосчисления, в которой большую роль играло движение Юпитера. В Др. Египте по наблюдениям звёзд определяли периоды весенних разливов Нила, обусловливавших сроки земледельческих работ; в Аравии, где из-за дневной жары многие работы совершались по ночам, существенную роль играли наблюдения фаз Луны; в Др. Греции, где было развито мореплавание и вопросы ориентирования были крайне актуальными, в особенности до изобретения компаса, получили развитие способы ориентирования по звёздам. У многих народов, в частности в странах ислама, с периодичностью небесных явлений, главным образом фазами Луны, был связан религиозный культ.

Довольно точные астрономические наблюдения производились и передавались последующим поколениям уже в самой глубокой древности. Благодаря этому египтяне за 28 в. до н. э. определили продолжительность года в 3651/4 сут. Период чередования лунных фаз (синодический месяц) был известен с точностью до нескольких мин, о чём свидетельствует найденный в 5 в. до нашей эры Метонов цикл, в котором по истечении 19 лет фазы Луны падают на те же даты года. Период повторяемости солнечных затмений, составляющий 18 лет 10 дней и названный Саросом, был известен уже в 6 в. до нашей эры. Все эти сведения были получены на основе многовековых наблюдений небесных явлений древними народами Китая, Египта, Индии и Греции.

Звёзды, как бы прикрепленные к небесному своду и вместе с ним совершающие суточное вращение, практически не меняя взаимного расположения, были названы неподвижными. В их неправильных группах пытались найти сходство с животными, мифологическими персонажами, предметами домашнего обихода. Так появилось деление звёздного неба на созвездия, различные у разных народов. Но, кроме таких неподвижных звёзд, уже в незапамятные времена стали известны 7 подвижных светил: Солнце, Луна и 5 планет, которым были присвоены имена римских божеств, - Меркурий, Венера, Марс, Юпитер и Сатурн. В честь Солнца, Луны и 5 планет были установлены 7 дней недели, названия которых в ряде языков до сих пор отражают это. Проследить движение по звёздному пути Луны и планет было нетрудно, т. к. они видны ночью на фоне окружающих звёзд. Установить такое движение Солнца помогли наблюдения ярких звёзд, которые появлялись перед восходом Солнца на фоне утренней зари (т. н. гелиакические восходы). Эти наблюдения в сочетании с измерением полуденной высоты Солнца над горизонтом с помощью простейших приспособлений позволили довольно точно определить путь Солнца среди звёзд и проследить его движение, совершающееся с годичным периодом по наклонному к экватору большому кругу небесной сферы, названному эклиптикой. Расположенные вдоль него созвездия получили название зодиакальных (от греч. zoon - животное), т. к. многие из них имеют имена живых существ (Овен, Телец, Рак, Лев и др.). В Др. Китае звёздное небо было подробно изучено и разделено на 122 созвездия, из них 28 зодиакальных. Составленный там список 807 звёзд на несколько столетий опередил звёздный каталог греческого учёного Гиппарха. Но у большинства народов было 12 зодиакальных созвездий, и Солнце в течение года проходило каждое созвездие примерно в течение месяца. Луна и планеты также движутся по зодиакальным созвездиям (хотя и могут отходить от эклиптики на несколько угловых градусов в обе стороны).

В то время как движение Солнца и Луны всегда происходит в одном направлении - с запада на восток (прямое движение), движение планет гораздо сложнее и временами совершается в обратном направлении (попятное движение). Причудливое движение планет, не укладывавшееся в простую схему и не подчинявшееся элементарным правилам, казалось, говорило о существовании у них личной воли и способствовало их обожествлению древними. Это, а также такие "устрашающие" явления, как лунные и особенно солнечные затмения, появление ярких комет, вспышки новых звёзд, породили лженауку - астрологию, в которой расположения планет в созвездиях и упомянутые явления связывались с происшествиями на Земле и служили для предсказания судьбы народов или отдельных личностей. Не имея ни малейшей научной основы, астрология, используя суеверия и невежество людей, тем не менее получила распространение и надолго удержалась у многих народов. Так, многие правители, военачальники и знатные люди держали специальных астрологов, с которыми советовались при принятии важных решений. Для того чтобы по правилам астрологии составлять гороскопы, по которым производилось мнимое предсказание будущего, нужно было знать расположение зодиака относительно горизонта в данный момент, а также положения планет, что повело к усилению астрономических наблюдений, уточнению периодов движения светил и созданию первых, хотя и очень несовершенных теорий движения планет. Т. о., астрология, несмотря на всю свою абсурдность, способствовала на определённом этапе развитию науки А.

Геоцентрическая система мира. Для усовершенствования теорий движений планет потребовалось основательное знание геометрии, разработанной в Греции (не раньше 4 в. до н. э.). В это время Евдокс Книдский, предшественник Аристотеля, создал теорию гомоцентрических сфер (дошедшую до нас лишь в пересказе Аристотеля), согласно которой планета прикреплена к поверхности полой сферы, равномерно вращающейся внутри другой сферы, тоже вращающейся вокруг оси, не совпадающей с осью вращения первой сферы. В центре этих сфер находится Земля. Для представления сложного движения некоторых планет потребовалось несколько таких концентрических сфер, общее число которых доведено учеником Евдокса Калиппом до 55. Позже, в 3 в. до н. э., греческий геометр Аполлоний Пергский упростил эту теорию, заменив вращающиеся сферы кругами, и этим положил основу теории эпициклов, получившую своё завершение в сочинении древнегреческого астронома Птолемея (2 в. н. э.), известном под названием "Альмагест". Принималось, что все небесные светила движутся по окружностям и притом равномерно. Неравномерные движения планет, изменения направления их движения объясняли, предполагая, что они одновременно участвуют в нескольких круговых равномерных движениях, происходящих в разных плоскостях и с разными скоростями. Земля, о шарообразности которой учила уже Пифагорейская школа в 6 в. до н. э., считалась покоящейся в центре Вселенной, что соответствовало непосредственному впечатлению, создаваемому видом звёздного неба; окружность земного шара измерил в 3 в. до н. э. Эратосфен в Александрии.

Для практического применения теория эпициклов нуждалась в значениях величин, определяющих периоды обращения планет, взаимные наклоны их орбит, длины дуг попятных движений и т. п., которые можно было получить только из наблюдений, измеряя соответствующие промежутки времени и углы. Для этого были созданы различные приспособления и инструменты, сначала простейшие, такие как Гномон, а затем и более сложные - Трикветрумы и армиллярные сферы (См. Армиллярная сфера). Последние позволяли определять эклиптические координаты "неподвижных" звёзд. Их списки (каталоги) были составлены в древности Ши Шэнем (Китай, 4 в. до н. э.), Тимохарисом (Греция, 3 в. до н. э.) и Гиппархом на полтораста лет позже (Греция, 2 в. до н. э.). Каталог Гиппарха содержит 1022 звезды с указанием их эклиптические широты и долготы и оценкой блеска в условной шкале звёздных величин, применяемой и поныне. При сравнении своего каталога с каталогом Тимохариса он обнаружил увеличение долгот всех звёзд и объяснил его движением точки весеннего равноденствия, от которой долготы отсчитываются. Так было открыто явление прецессии (См. Прецессия).

Астрономия в средние века. "Альмагест" Птолемея, в котором были подытожены астрономические знания того времени, оставался в течение многих веков фундаментом геоцентрической системы мира. Возникновение христианства с его догматизмом, нашествия варваров привели к упадку естествознания и, в частности, А. в средние века. В течение целого тысячелетия в Европе было мало прибавлено, но много позабыто из того, что было известно о строении Вселенной благодаря трудам учёных античного мира. Священное писание явилось каноном, из которого черпались ответы на все вопросы, в том числе и из области А.

Лишь арабы и соприкасавшиеся с ними народы сделали попытку если не реформировать А., то по крайней мере уточнить новыми наблюдениями старые теории. Багдадский халиф аль-Мамун распорядился в 827 перевести сочинение Птолемея с греческого на арабский язык. Арабский учёный аль-Баттаии в конце 9 - начале 10 вв. произвёл многочисленные наблюдения, уточнив значения годичной прецессии, наклона эклиптики к экватору, эксцентриситета и долготы перигея орбиты Солнца. В том же 10 в. арабский астроном Абу-ль-Вефа открыл одно из неравенств (неправильностей) в движении Луны. Большие заслуги в развитии А. принадлежат Абу Рейхану Вируни (Хорезм, конец 10 - 11 вв.), автору разнообразных астрономических исследований. А. процветала у арабских народов и в Ср. Азии вплоть до 15 в. Многие крупнейшие учёные наряду с другими науками занимались уточнением астрономических постоянных геоцентрической теории. Особенно известны астрономические таблицы, составленные в 1252 еврейскими и мавританскими учёными по распоряжению Кастильского правителя Альфонса Х и поэтому называвшиеся альфонсовыми. Наблюдательная А. получила развитие в Азербайджане, где Насирэддин Туси соорудил большую обсерваторию в Мараге. По размерам, количеству и качеству инструментов выдающееся место заняла обсерватория Улугбека в Самарканде, где в 1420-37 был составлен новый большой каталог звёзд. Арабы сохранили от забвения классическую А. греков, обновили планетные таблицы, развили теорию, но, следуя Птолемею, не внесли в А. коренных реформ. В эту эпоху астрономические наблюдения производились также в Китае и Индии.

В 12-13 вв. некоторое оживление естествознания стало замечаться также и в Европе. Постепенно, не без влияния арабов, наиболее просвещённые люди знакомились с наукой и философией древних греков, сочинения которых переводили (часто с арабского) на латинский язык. Учение Аристотеля было признано согласным с церковной догмой: геоцентрическая система мира не противоречила священному писанию. В Италии, а затем и в других странах Зап. Европы учреждались университеты, которые, хотя и находились под сильным влиянием церковной схоластики, всё же содействовали развитию естествознания.

Гелиоцентрическая система мира. В связи с развивающимися мореплаванием и географическими исследованиями, требовавшими уточнения знаний положений звёзд и планет, несколько выдающихся астрономов, главным образом в Германии, возобновили наблюдения для усовершенствования планетных таблиц. В передовых университетах преподавалась геометрия, необходимая для усвоения теории эпициклов, и изучался "Альмагест", несколько переводов которого на латинский язык было напечатано в Венеции (1496, 1515 и 1528) и в Базеле (1538). Всё это благоприятствовало тому, что польский астроном Н. Коперник, познакомившийся в Краковском университете и затем в Италии со всеми подробностями теории эпициклов, по возвращении в Польшу произвёл полный переворот в А., вскрыв истинное строение планетной системы с Солнцем в центре и движущимися вокруг него планетами, в том числе и Землёй вместе с её спутником Луной. Уже древнегреческий астроном Аристарх Самосский в 3 в. до н. э. высказывал мысль, что Земля движется вокруг Солнца, а Гераклит ещё раньше предполагал, что Земля вращается вокруг оси. Но только Коперник во всех деталях разработал и обосновал гелиоцентрическую систему мира и последовательно изложил её в сочинении "Об обращениях небесных сфер", напечатанном в Нюрнбергов 1543. Этот труд дал ключ к познанию Вселенной в её действительном строении, а не в виде математической абстракции, описывающей лишь видимую сторону явлений. Однако веками укоренившееся мнение о неподвижной Земле как центре Вселенной, разделяемое церковью, долго не уступало места новому учению, которое не могли понять даже многие выдающиеся люди того времени. Считалось, что система Коперника лишь гипотеза, предназначенная для вычисления планетных движений, чему способствовало предисловие издателя книги Коперника, напечатанное без ведома автора. Даже крупнейший наблюдатель датский астроном Тихо Браге (16 в.) отказывался принять и даже понять гелиоцентрическую систему. Окончательно утвердил теорию Коперника, получив непреложные доказательства её истинности, итальянский физик, механик и астроном Г. Галилей (2-я половина 16 - 1-я половина 17 вв.). Другой пламенный проповедник множественности обитаемых миров - Дж. Бруно (16 в.) за это, с точки зрения церкви, еретическое учение после семилетнего заключения был сожжён в Риме на костре. Астрономические открытия Галилея были сделаны с помощью телескопа, незадолго перед тем изобретённого в Голландии. Галилей, узнав об этом изобретении, летом 1609 в Венеции сделал собственную зрительную трубу и уже в начале следующего года оповестил весь мир о своих удивительных открытиях. На Луне он увидел горы, обнаружил диски у планет, Млечный Путь оказался состоящим из бесчисленных звёзд, невидимых невооружённым глазом, в скоплении Плеяд он насчитал св. 40 звёзд. Затем он открыл 4 спутника Юпитера, которые, обращаясь вокруг центральной планеты, представляли уменьшенную копию планетной системы. Обнаруженная им смена фаз Венеры свидетельствовала о том, что эта планета обращается вокруг Солнца, а не Земли. На самом Солнце Галилей увидел пятна, разделив честь этого открытия с немецкими астрономами К. Шейнером и И. Фабрициусом. И только тогда, когда гелиоцентрическая система мира получила столь блестящие подтверждения, католическая церковь приняла меры к её запрету, считая, что она подрывает авторитет Священного писания. Перед судом инквизиции Галилей был вынужден отречься от учения Коперника (1633). Само же сочинение Коперника было внесено в список (индекс) запрещенных книг (этот запрет официально был снят лишь 200 лет спустя).

Развитие небесной механики. Современник Галилея И. Кеплер, будучи в Праге ассистентом Тихо Браге, после смерти последнего получил непревзойдённые по точности результаты наблюдений планет, проводившихся в течение более чем 20 лет. Особое внимание Кеплера привлёк Марс, в движении которого он обнаружил значительные отступления от всех прежних теорий. Ценой огромного труда и длительных вычислений ему удалось найти 3 закона движения планет, сыгравших важную роль в развитии небесной механики (т. н. Кеплера законы), 1-й закон, гласящий, что планеты движутся по эллипсам, в фокусе которых находится Солнце, разрушил тысячелетнее представление о том, что орбиты планет обязательно должны быть окружностями. 2-й закон определил переменную скорость движения планеты по орбите, 3-й закон установил математическую связь между размерами эллиптических орбит и периодами обращения планет вокруг Солнца. Таблицы движения планет, составленные Кеплером на основании этих законов, намного превзошли по точности все прежние и оставались в употреблении в течение всего 17 в.

Дальнейший прогресс А. тесно связан с развитием математики и аналитической механики, с одной стороны, и с успехами оптики и астрономического приборостроения - с другой, фундаментом небесной механики явился закон всемирного тяготения, открытый И. Ньютоном в 1685 (Ньютона закон тяготения). Следствием этого закона оказались и законы Кеплера, но лишь для того частного случая, когда планета движется под влиянием притяжения одного лишь центрального тела - Солнца. Выяснилось, что в реальном случае, при наличии взаимного притяжения между всеми телами Солнечной системы, движение планет сложнее, чем описываемое законами Кеплера, и если они всё же соблюдаются с хорошим приближением, то это результат сильного преобладания притяжения массивного Солнца над притяжением всех остальных планет. Гравитационная сила, выражающаяся простой формулой в случае притяжения между двумя материальными точками, приводит к очень сложным математическим построениям в случае нескольких точек или притяжения между телами, состоящими из многих материальных точек. Именно такими являются все тела Солнечной системы, да и все космические тела вообще. Лишь благодаря трудам многих математиков, прежде всего Ньютона, затем Ж. Лагранжа, Л. Эйлера, П. Лапласа, К. Гаусса и ряда др., сложнейшая задача о движении, фигурах и вращении планет с их спутниками была решена с высокой точностью. Блестяще подтвердившееся предсказание английского астрономом Э. Галлеем следующего появления кометы, носящей теперь его имя, и вычисление французским учёным А. Клеро момента прохождения кометы через перигелий в 1759, открытие в 1846 Нептуна по вычислениям французского астронома У. Леверье, обнаружение на основе вычислений невидимых спутников у некоторых звёзд (у Сириуса и Проциона немецкого астрономом Ф. Бесселем в 1844), впоследствии увиденных в большие телескопы, явились блестящими подтверждениями того, что движение небесных тел происходит в основном под действием гравитационных сил. Наиболее сложным является движение Луны вокруг Земли, но и его удалось представить с почти исчерпывающей точностью. Остававшиеся в движении Луны небольшие отклонения от теории, которые раньше приписывались какому-то негравитационному влиянию, в 20 в. объяснились ошибками в измерениях времени вследствие неравномерности вращения Земли. Т. о., небесная механика, пользуясь данными, доставляемыми астрометрией, оказалась в состоянии объяснить и пред вычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике, и подготовить почву для труднейших экспериментов - запусков искусств, спутников Земли и космических зондов.

Телескопические наблюдения. Усовершенствование телескопа шло сначала довольно медленно. По сравнению с трубой Галилея некоторым улучшением было предложение Кеплера заменить рассеивающую окулярную линзу собирающей, что расширило поле зрения и позволило применять более сильные увеличения. Этот простой окуляр был затем усовершенствован Х. Гюйгенсом и применяется поныне. Однако вследствие хроматической и отчасти сферической аберрации изображения продолжали оставаться расплывчатыми, с радужными каёмками, что заставляло для уменьшения их влияния увеличивать фокусные расстояния объективов (до 45 м), сохраняя сравнительно малые их диаметры, т. к. в то время не умели выплавлять большие блоки оптического стекла. Но и с такими несовершенными инструментами был сделан ряд важных открытий. Так, Гюйгенс в 1655 разглядел кольца Сатурна (Галилею диск Сатурна казался удлинённым или "тройным"). Гюйгенс открыл наиболее яркий спутник Сатурна, Дж. Кассини обнаружил ещё 4 других, более слабых спутника. Он же в 1675 заметил, что кольцо состоит из двух концентрических частей, разделённых тёмной полоской - "щелью Кассини". В 1675 О. Рёмер по наблюдениям затмений спутников Юпитера открыл конечность скорости света и измерил её.

Дальнейшее усовершенствование оптических инструментов пошло по другому пути. Ошибочно считая, что дисперсия света пропорциональна преломлению. Ньютон пришёл к заключению, что невозможно сделать объектив ахроматическим. Это явилось толчком к созданию рефлекторов, в которых изображение строится вогнутым зеркалом, принципиально лишённым хроматизма. Постепенное совершенствование искусства шлифовки зеркал, сделанных из сплава олова с медью, позволило делать рефлекторы всё больших размеров, допускающих очень сильные увеличения. Так, в 1789 В. Гершель (Англия) довёл диаметр зеркала до 122 см. Однако начиная с середины 18 в. рефракторы также получили существенное усовершенствование. В это время были созданы стекла с большой дисперсией (флинтглас), и объективы стали делать двойными, сочетая 2 сорта стекла. Наряду со значит. уменьшением хроматизма такие объективы были свободны и от сферической аберрации, что позволило во много раз сократить длину трубы, повысить проницающую силу инструментов и получать чёткое изображение без радужных каёмок.

При помощи новых инструментов искусные наблюдатели сделали много открытий, причём относящихся не только к телам Солнечной системы (таких, как открытие М. В. Ломоносовым в 1761 атмосферы у Венеры и исследование комет), но и к миру слабых и далёких звёзд. Так, были обнаружены многочисленные звёздные скопления и туманности (считавшиеся в то время также скоплениями, в которых из-за их удалённости не видны отдельные звёзды). Первые каталоги таких объектов были составлены во Франции Ш. Мессье (в 1771 и 1781); введённые им обозначения употребляют и поныне. В результате обширных систематических наблюдений В. Гершель обосновал ограниченность звёздной системы в пространстве и укрепил т. о. предположения И. Ламберта (1761) о существовании многих звёздных систем, из которых та, где находится Солнце, ограничивается Млечным Путём. Лишь в 20 в. эта теория "островной Вселенной" получила подтверждение и дальнейшую разработку.

Роль телескопа в А. далеко не исчерпывается такими открытиями. Может быть ещё важнее применение телескопа к точным угловым измерениям. У. Гаскойн в Англии (1640) поместил в фокусе телескопа нити, которые видны на фоне наблюдаемого объекта, и этим повысил точность визирования во много десятков раз. Им же был изобретён первый окулярный микрометр для измерений малых угловых расстояний между деталями изображения, одновременно видимыми в поле зрения телескопа. Ж. Пикар во Франции (1667) снабдил телескоп разделёнными кругами, по которым отсчитывались углы с точностью до секунды дуги; это определило и соответствующую точность измерений сферических координат звёзд, без чего не был бы возможен дальнейший прогресс в области астрометрии и звёздной А. Применив такой инструмент в работах по триангуляции во Франции, Пикар получил новые, более точные размеры земного шара, используя которые Ньютон открыл закон всемирного тяготения. Измеряя взаимные положения компонентов двойных звёзд с помощью окулярного микрометра, В. Гершель (1803) установил, что многие из них представляют собой физически связанные взаимным тяготением системы, состоящие из двух (а иногда и больше) звёзд, обращающихся вокруг общего центра масс по законам Кеплера. Этим была доказана действительная универсальность тяготения, действующего во всех местах Вселенной. Сравнивая свои телескопические определения координат звёзд со старыми греческими (Гиппарх, Тимохарис), Галлей обнаружил в 1718, что 3 яркие звезды - Альдебаран, Сириус и Арктур - изменили своё положение настолько, что это нельзя было объяснить ошибками старых наблюдений. Так были открыты Собственные движения звёзд. К 1783 число звёзд с известным собственным движением возросло до 12; исследуя их, В. Гершель пришёл к заключению, что часть собственного движения каждой звезды является отражением движения Солнечной системы в пространстве и определил направление этого движения (в сторону созвездия Геркулеса). Всё это помогло начать изучение распределения и движения звёзд в системе Млечного Пути, получившей впоследствии название Галактики (См. Галактика). Телескопические же наблюдения привели английского астронома Дж. Брадлея в 1725 к открытию явления аберрации света (См. Аберрация света), которое он правильно объяснил конечной скоростью света, а в 1748 - к открытию нутации (См. Нутация) земной оси.

Одной из фундаментальных и трудных задач А. во все времена было определение астрономической единицы (См. Астрономическая единица) - среднего расстояния Земли от Солнца, которое является основной единицей измерений всех расстояний во Вселенной. Были проведены многие попытки решить проблему, но все они, по мере совершенствования методики и техники наблюдений, приводили всё к большим и большим значениям этой единицы. Первые близкие к истине результаты были получены методом, предложенным Галлеем, - наблюдением из разных точек Земли прохождений Венеры по диску Солнца в 1761, 1769, 1874 и 1882 и определением таким путём параллакса Солнца (последний, при известных размерах Земли, даёт возможность вычислить астрономическую единицу). Для наблюдений этих прохождений снаряжались многочисленные экспедиции. Первое из них было видимо на С. Европы и в Сибири. От Петербургской АН его наблюдал С. Я. Румовский в Селенгинске за Байкалом. Обработка всех наблюдений привела к значениям параллакса Солнца от 8,5" до 10,5". Прохождение в 1769 Румовский наблюдал в Коле, а И. И. Исленьев в Якутске. Однако возлагавшиеся надежды на точность определения параллакса Солнца не сбылись, и после открытия в 1801 малых планет, среди которых имеются весьма близко подходящие к Земле, появилась другая возможность определения этой важной астрономической постоянной. В итоге всех определений, выполненных в 19 в., для параллакса Солнца было принято значение 8,80", что соответствует значению астрономической единицы 149 500 000 км. В 60-х гг. 20 в., на основании радиолокационных измерений, для астрономической единицы принято значение 149,600 млн. км.

Фундаментальное значение имели первые определения расстояний до звёзд измерением годичных параллаксов (См. Параллакс Солнца). По мере совершенствования телескопических наблюдений становилось ясным, что параллаксы, представляющие собой перспективные смещения звёзд, вызванные годовым движением Земли вокруг Солнца, чрезвычайно малы. Попытки обнаружить эти смещения, начатые вскоре после гениального открытия Коперника и приведшие к ряду неожиданных открытий - аберрации света, физических двойных звёзд, невидимых спутников звёзд, - долгое время оставались безуспешными. Ко времени В. Гершеля выяснилось, что параллаксы даже наиболее близких звёзд не превышают 1", а такие углы и не могли быть измерены инструментами того времени. Лишь В. Я. Струве в 1837 в Дерпте и Ф. Бесселю в 1838 в Кенигсберге удалось впервые уверенно измерить параллаксы соответственно звезды Веги и 61 Лебедя. Т. о., был впервые определён правильный масштаб расстояний во Вселенной. Работы Струве и Бесселя были основаны на визуальных телескопических наблюдениях. С начала 20 в. измерения звёздных параллаксов стали производить исключительно астрофотографическими методами. Найденная впоследствии самая близкая к нам звезда имеет параллакс 0,76", что соответствует расстоянию в 1,3 Парсека (4,3 световых: года).

Важным направлением А. явилось составление звёздных каталогов (См. Звёздные каталоги), содержащих точнейшие координаты звёзд. Их значение настолько велико, что они были названы фундаментом А. Они нужны как для научных целей, в частности для определения астрономических постоянных и исследования движений во Вселенной, так и для прикладных целей - геодезии, картографии, географических исследований, мореплавания, космонавтики. В этой области особенно большие заслуги имеют обсерватории: Гринвичская (основана в 1675), Пулковская (1839), Вашингтонская (1842) и обсерватория в Кейптауне в Юж. Африке (1820).

В конце 18 в. сведения о Солнечной; системе пополнились благодаря открытию в 1781 планеты Уран. Изучение закономерностей его движения привело в 1846 к открытию Нептуна, а в 1930 была открыта самая удалённая от Солнца планета Плутон. В 1801 была обнаружена первая малая планета (См. Малые планеты), в настоящее время (конец 60-х гг. 20 в.) известно уже более 1700 тел этого типа. Некоторые из них представляют большой интерес характером своего движения (например, т. н. Троянцы), другие - малостью расстояния, на которое они могут приближаться к Земле.

Развитие астрофизики. До середины 18 в. из разделов А., составляющих современную астрофизику, лишь фотометрия, первоначально ограничивавшаяся глазомерными оценками блеска звёзд, получила экспериментальную разработку в трудах французского учёного П. Бугера (1729) и теоретическое обоснование в исследованиях немецкого учёного И. Ламберта (1760). Тогда же было окончательно доказано, что Солнце есть звезда, отличающаяся от других звёзд лишь близостью к нам, а что если его удалить на расстояния звёзд, то оно ничем не будет от них отличаться. Изучение количества звёзд: разных звёздных величин позволило В. Я. Струве в 1847 обосновать существование поглощения света в межзвёздном пространстве - явления, окончательно подтвержденного в 1930 американским астрономом Р. Трамплером.

Огромные и всё увеличивающиеся возможности исследования физической природы и химического состава звёзд были получены благодаря изобретению спектрального анализа (Р. Бунзен и Г. Кирхгоф, 1859). Пионерами применения этого метода к Солнцу, звёздам и туманностям были У. Хёггинс и Дж. Локьер в Англии, А. Секки в Италии, Ж. Жансен во Франции. Чешский физик К. Доплер сформулировал в 1842 свой знаменитый принцип (Доплера эффект), уточнённый А. Физо в 1848 и экспериментально проверенный А. А. Белопольским на лабораторной установке в 1900. Принцип Доплера получил многочисленные применения в А. для измерений движения по лучу зрения и вращения звёзд, турбулентных движений в солнечной фотосфере и пр., а затем и в самых разнообразных областях физики. Спектральный анализ позволил углубить исследования переменных звёзд, изучение которых началось ещё в конце 18 в., а также обнаружить множество спектрально-двойных звёзд, компоненты которых столь близки между собой, что их невозможно раздельно наблюдать даже в самые сильные телескопы.

Изобретённая в 1839 фотография получила широкое применение в А., когда стали изготовлять сухие фотопластинки. Особенную пользу принесла фотография в сочетании с фотометрией, спектроскопией и астрометрией, позволив глубоко и детально исследовать строение, химический состав и движение различных небесных объектов. Фотоэмульсия как приёмник излучения с большим успехом заменила глаз при многих астрономических наблюдениях, повысив их точность, объективность и документальность, а также позволила фиксировать неуловимые глазом быстротекущие явления и слабые небесные светила. Когда выяснились преимущества и возможности фотографии, в 1888 был принят международный план составления фотографического каталога звёзд всего неба до 11-й звёздной величины общим числом около 3,5 млн. и карт, содержащих около 30 млн. звёзд до 14-й звёздной величины (около 22 000 листов). В выполнении этой работы приняли участие 18 обсерваторий мира. С тех пор Астрофотография заняла прочное место в практике астрономических наблюдений.

Астрономия в 20 в. А. в 20 в. характеризуется огромным развитием техники наблюдений. Строят большие рефлекторы, в которых быстро темнеющие металлические зеркала заменены стеклянными, посеребрёнными химическим путём либо покрытыми слоем алюминия катодным распыливанием в высоком вакууме. В США в 1908 сооружен рефлектор с зеркалом диаметром 152 см, 254 см в 1917, 508 см в 1948, 305 см в 1959. В СССР в 1960 вступил в строй рефлектор с зеркалом в 260 см, монтируется рефлектор с зеркалом диаметром 600 см. Таким инструментам с современными светоприёмниками становятся доступными звёзды до 25-й звёздной величины, которые в 1010 раз слабее наиболее ярких (см. Астрономические инструменты и приборы).

Большие успехи достигнуты в создании новых типов приёмников излучения (См. Приёмники излучения). Во много раз повышена чувствительность фотоэмульсий и расширена их спектральная область. Фотоэлектронные умножители (См. Фотоэлектронный умножитель), электронно-оптические преобразователи (См. Электроннооптический преобразователь), методы электронной фотографии (См. Электронная фотография) и телевидения (телевизионные телескопы (См. Телевизионный телескоп)) значительно повысили точность и чувствительность фотометрических наблюдений и ещё более расширили спектральный диапазон регистрируемых излучений. Совершенствование спектральной аппаратуры позволило, с одной стороны, получать спектрограммы с очень высокими дисперсиями, а с другой - регистрировать спектры очень слабых светил. Стал доступным наблюдению мир далёких галактик, находящихся на расстояниях млрд. световых лет (см. Галактики, Вселенная).

В 30-х гг. 20 в. возник новый, быстро развивающийся раздел А. - радиоастрономия: было обнаружено, что из многих точек небесной сферы к нам приходят электромагнитные излучения в диапазоне от миллиметровых до метровых волн. Многие из этих источников излучения были отождествлены с галактиками. Но в 60-х гг. были найдены практически точечные мощные источники, которыми оказались слабые объекты с необычными оптическими спектрами без тёмных линий поглощения и лишь немногими светлыми эмиссионными линиями. Последние удалось отождествить с линиями водорода и некоторых других элементов, очень сильно смещенными в сторону длинных волн; Красное смещение, будучи истолковано как эффект Доплера, свидетельствует об их огромной, составляющей миллиарды световых лет удалённости. Эти загадочные объекты, излучение которых, по-видимому, имеет синхротронную природу, получили название квазаров. Ещё более загадочны источники радиоизлучения переменной мощности с периодами порядка секунды, названные пульсарами. С помощью радиоастрономических наблюдений изучено распределение межзвёздного водорода в Галактике и подтверждено её спиральное строение (см. Галактика, Межзвёздная среда).

Энергия звёзд, в частности Солнца, генерируется в их недрах ядерными процессами при температурах, достигающих десятков млн. градусов, что сопровождается выделением особых частиц огромной проницающей способности, т. н. нейтрино. Их исследование привело к возникновению ещё одной отрасли - нейтринной астрономии (См. Нейтринная астрономия).

Новейшая вычислительная техника нашла широкое применение в обработке наблюдений и открыла новые возможности в небесной механике и астрофизике, в частности при вычислении движения искусственных спутников и межпланетных ракет.

Значительных успехов достигли исследования Солнца (См. Солнце). Использование специальных фильтров, пропускающих очень узкую полосу спектра, позволило изучить распределение и движение отдельных элементов - водорода, гелия, кальция в солнечной хромосфере. Благодаря разработке специальной методики и аппаратуры стало возможным наблюдать солнечную корону (См. Солнечная корона) вне затмений - в ясный день, а Зеемана явление дало возможность изучать магнитные поля на Солнце, определяющие ряд явлений как на Солнце, так и на Земле.

Получено много новых сведений о движениях звёзд и расстояниях до них. Однако прямой тригонометрический метод определения Параллаксов даже при современной точности измерений ограничен расстояниями, примерно до 100 Парсек. Разработанные методы определения светимости звёзд по характеру их спектра позволили фотометрическим путём определять расстояния до значительно более удалённых звёзд. Наконец, пульсирующие переменные звёзды - Цефеиды, период изменения блеска которых тесно связан со светимостью, также явились объектами, позволяющими определять расстояния до удалённых звёздных скоплений, галактик, где эти звёзды наблюдаются. Особенно широко развилось исследование переменных звёзд (См. Переменные звёзды), в значительной мере благодаря работам русских и советских учёных. Международный центр, систематизирующий эти исследования, теперь находится в Москве.

Большой интерес представляет явление, теоретически предвиденное советским учёным А. А. Фридманом в 1922 и исследованное американским астрономом Э. Хабблом в 1929, которое состоит в том, что линии спектра далёких галактик смещены в красную сторону (т. н. красное смещение). Если это смещение трактовать как эффект Доплера, то оно свидетельствует об удалении галактик со скоростями, пропорциональными их расстоянию, т. е. об общем расширении наблюдаемой части Вселенной. Что касается нашей Галактики, то удалось определить её размеры, общую массу и выяснить, что Солнце расположено в ней далеко от центра. Вращение Галактики было обнаружено на основе статистического анализа русским астрономом М. А. Ковальским в 1859 и детально исследовано голландским астрономом Я. Оортом в 1927.

Огромное значение для исследования звёздной системы и эволюции звёзд имеет зависимость светимости звёзд от спектрального класса, выражающаяся Герцшпрунга - Ресселла диаграммой (См. Герцшпрунга - Ресселла диаграмма) и позволяющая составить более полные представления о путях развития звёзд (См. Звёзды). Успехи современной физики помогли найти и изучить источники звёздной энергии и разработать теорию эволюции звёзд на основе ядерных процессов, совершающихся в их недрах. В свою очередь, результаты астрофизических исследований значительно способствовали успехам ядерной физики. Эволюционные идеи в А. появились намного раньше, чем в других естественных науках. Сформулированная ещё в 1755 И. Кантом космогоническая гипотеза ясно отражала эту мысль. Постепенно формировалось сознание того, что мир произошёл не в результате единовременного акта творения, а что образование звёзд, планетных систем и других небесных объектов есть постоянный процесс, совершающийся и в настоящее время. Подтверждением этого явились закономерности звёздных ассоциаций (См. Звёздные ассоциации), изучение которых начато В. А. Амбарцумяном в 1946. Эти объекты состоят из широко рассеянных групп сравнительно молодых звёзд совместного происхождения, возраст которых оценивается в несколько миллионов лет, тогда как возраст Солнца исчисляется миллиардами лет.

Начато изучение ещё одного важного космогонического фактора, играющего большую роль в процессах, совершающихся в межзвёздной среде. Это - межзвёздные магнитные поля (См. Межзвёздное магнитное поле). В то время как раньше космогонические теории строились с учётом лишь инерциальных сил и сил всемирного тяготения, теперь принимаются во внимание также и другие воздействия - световое давление и магнитные силы.

Научная работа в области А. производится в астрономических обсерваториях и научно-исследовательских институтах. Среди них наиболее значительными являются: старейшая Гринвичская астрономическая обсерватория (основана в 1675), ныне из предместья Лондона вынесенная на юг Англии в замок Хёрстмонсо, Главная Астрономическая обсерватория Пулковская АН СССР (1839) близ Ленинграда, Государственный Астрономический институт имени П. К. Штернберга, включивший в свой состав Московскую астрономическую обсерваторию (1830), Вашингтонская морская обсерватория (США; 1842), Капская астрономическая обсерватория (Юж. Африка; 1820), Ликская астрономическая обсерватория (США; 1888), Йерксская астрономическая обсерватория (США; 1897), Крымская астрофизическая обсерватория АН СССР, созданная на базе Симеизской обсерватории, основанной в 1908, Бюраканская астрофизическая обсерватория АН Армянской ССР (1946) и др. (см. Астрономические обсерватории и институты).

В связи с множеством астрономических объектов, изучаемых А., уже давно встал вопрос о координации и объединении усилий учёных разных стран путём организации международных астрономических обществ и издания соответствующих журналов. В 1821 в Германии начал издаваться журнал "Астрономише нахрихтен" ("Astronomische Nachrichten"), который имел международное значение вплоть до 1-й мировой войны. В других странах, где развиты исследования в области А., издаются также научные астрономические журналы, в том числе в СССР с 1924 регулярно выходит "Астрономический журнал", издаваемый АН СССР (см. также Астрономические журналы).

В 1863 в Германии было образовано Астрономическое общество (Astronomische Gesellschaft), организовавшее составление на 13 обсерваториях разных стран большого каталога с точными координатами звёзд Северного полушария неба. Роль международного, в известной мере, играло также Английское королевское астрономическое общество. После 1-й мировой войны функции координатора научных работ перешли к учрежденному в 1919 Международному астрономическому союзу, который проводит каждые 3 года большие съезды для подведения итогов и обсуждения планов дальнейшего развития А. В России до революции было несколько небольших научных или любительских обществ, на базе которых в 1932 образовалось Всесоюзное астрономо-геодезическое общество (см. также Астрономические общества).

В 1957 в СССР был запущен 1-й искусственный спутник Земли. Впервые научная аппаратура была вынесена за пределы земной атмосферы, которая своей малой прозрачностью, неспокойствием и неоднородностью мешает астрономическим наблюдениям и сильно ограничивает их. Началась разработка внеатмосферной А., которой принадлежит огромное будущее. Сама А., которая до сих пор могла лишь наблюдать явления, совершающиеся в космосе, никак не влияя на их течение, теперь становится наукой экспериментальной, способной исследовать космическое пространство и изучать небесные тела, прежде всего Луну и ближайшие планеты опытным путём, производя исследования на них самих. Недалеко время, когда астрономические обсерватории будут сооружены на Луне. Но лишь сочетание внеатмосферных наблюдений с наземными даст наиболее полные и ценные результаты в познании Вселенной.

Лит.: Воронцов-Вельяминов Б. А., Мир звезд, М., 1952; его же, Очерки истории астрономии в СССР, М., 1960; его же, Очерки о Вселенной, 5 изд., М., 1964; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966; Кларк А., Общедоступная история астрономии в 19 столетии, пер. с англ., Одесса, 1913; Стремгрен Э., Стремгрен Б., Астрономия, пер. с нем., М.-Л., 1941; Фламмарион К., Популярная астрономия, пер. с франц., М.-Л., 1941; Берри А., Краткая история астрономии, пер. с англ., 2 изд., М.-Л., 1946: Паннекук А., История астрономии, пер. с англ., М., 1966; Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Струве О., Зебергс В., Астрономия 20 в., пер. с англ., М., 1968; Методы астрономии, пер. с англ., М., 1967; Лаврова Н. Б., Библиография русской астрономической литературы. 1800-1900, М., 1968; Bigourdan G., L'astronomie, P., 1916; , A source book in astronomy, N. Y.-L., 1929; Waterfield R., A hundred years of astronomy, L. , 1938; Newcomb E., Engelmann R., Populare Astronomie, 8 Aufl., Lpz., 1948; Source book in astronomy. 1900 - 1950, ed. by H. Shapley, Camb. (Mass.), 1960.

А. А. Михайлов.

II Астро́номия ("Астро́номия",)

реферативный журнал Всесоюзного института научной и технической информации АН СССР. Издается в Москве с 1963 (в 1953-62 издавался реферативный журнал "Астрономия и геодезия"); 12 выпусков в год. Публикует рефераты, аннотации или библиографические описания статей и книг по астрономии, печатающихся в СССР и за рубежом. Каждый номер содержит около 650 публикаций и авторский указатель. Ежегодно отдельными номерами публикуются авторский и предметный указатели.

Авиационная астрономия Искать примеры произношения

раздел практической астрономии, в котором рассматриваются методы астрономической навигации в полёте. Основная задача А. а. заключается в автономном, т. е. выполняемом без помощи каких-либо наземных устройств, определении местонахождения самолёта путём наблюдения небесных светил. В соответствии со спецификой условий работы в полёте, методы А. а. не содержат громоздких вычислений и обеспечивают определение координат с наименьшей затратой времени. Наблюдения небесных светил выполняются с помощью Секстантов (результаты наблюдений используются для определения местонахождения самолёта графоаналитическим способом, см. Сомнера способ) и автоматических астроориентаторов, осуществляющих автоматическую пеленгацию светил и выполняющих соответствующие вычисления. Время определяется с помощью точных часов - хронометров. При расчётах используются сведения, публикуемые в авиационных астрономических ежегодниках, а также специальные таблицы. Перед другими методами навигации методы А. а. имеют то преимущество, что их точность не зависит от дальности и продолжительности полёта.

Баллонная астрономия Искать примеры произношения

название, принятое для астрономических наблюдений со свободно летящих в атмосфере аэростатов. Возникновение Б. а. связано со стремлением исключить влияние нижних слоев земной атмосферы, ограничивающих разрешающую способность телескопов, и расширить исследуемый диапазон за счёт инфракрасного излучения, поглощаемого при наблюдениях с поверхности Земли парами воды. В Б. а. пользуются телескопами диаметром до 1 м, работающими на высотах до 27-30 км. Исследуются главным образом Солнце и планеты. В СССР работы в области Б. а. ведутся с 1966.

Г. А. Лейкин.

Внеатмосферная астрономия Искать примеры произношения

научная дисциплина, использующая для исследований астрономические инструменты, поднимаемые за пределы плотной атмосферы. Стремление вынести наблюдательные инструменты за пределы атмосферы связано с тем, что её прозрачность ограничена лишь двумя сравнительно узкими спектральными областями: видимым светом (длина волны 3000-7500Å) и радиодиапазоном (от 1,25 см до 30 м). Приходящие от Солнца и других астрономических объектов излучения в других длинах волн в той или иной степени поглощаются в основном водяным паром, углекислым газом, озоном. Поглощение быстро убывает с высотой над поверхностью Земли главным образом за счёт уменьшения содержания паров воды. Значительные помехи в наземных наблюдениях обусловлены также запылённостью атмосферы, облаками и преломлением света на термических неоднородностях атмосферы, вызывающих мерцание.

Для проведения внеатмосферных астрономических наблюдений используют ракеты, сравнительно небольшие искусственные спутники Земли и отчасти космические зонды. С помощью инструментов, установленных на ракетах, получены спектрогелиограммы - фотографии Солнца в ультрафиолетовых лучах, в спектральных линиях излучения водорода и кальция, что представляет большой интерес для изучения активных областей Солнца. Получены также спектры излучения Солнца в ультрафиолетовой и рентгеновской областях спектра, что позволяет изучать как активность Солнца, так и механизм воздействия его на верхнюю атмосферу Земли. Измерения длинноволнового и коротковолнового излучения небесных светил проведены с помощью искусственных спутников Земли и космических зондов "Электрон" и "Зонд" (СССР), "ОСО" и "Солрад" (США) и др., эксперименты по фотографированию неба в ультрафиолетовой и рентгеновской областях спектра осуществлены с помощью ракет и т.п.

Внеатмосферные исследования дополняют результаты наземных астрономических наблюдений. Так, пролётные и посадочные эксперименты (впервые начатые в СССР в 1959) для изучения физических характеристик Луны, Марса и Венеры (космические аппараты серий "Луна", "Венера", "Зонд" - СССР, "Сервейор", "Лунар орбитер", "Маринер" - США) значительно углубили знания физических условий на этих небесных телах. Большое значение в этом отношении имели наблюдения (впервые в 1969) американских космонавтов на поверхности Луны и особенно астрономические эксперименты, выполненные с помощью советских аппаратов - автоматической станции "Луна-16" и подвижной лаборатории на поверхности Луны - "Луноход-1" (с 18 ноября 1970). К области В. а. относятся исследования магнитных полей в окрестностях небесных тел и в межпланетном пространстве, корпускулярных потоков и космических лучей, изучение твёрдой компоненты межпланетного вещества. Взятие проб микрометеорных частиц и регистрация соударений с микрометеорными частицами, широко проводившиеся в СССР и США, дали результаты, существенно дополняющие те данные, которые были получены путём изучения крупных метеоритов, упавших на Землю, и наземных отложений микрометеорного вещества.

К В. а. можно отнести и баллонную астрономию (См. Баллонная астрономия), использующую для подъёма астрономических инструментов, в том числе и телескопов, большие аэростаты, достигающие высот 30 км и более.

В перспективе В. а. - создание внеатмосферных орбитальных и лунных обсерваторий. Одним из первых шагов в этом направлении следует считать спутник "Старгейзер" (США), запущенный в декабре 1968 и несущий на борту телескоп, который позволяет получать фотографии и телевизионные изображения небесных тел и других астрономических объектов.

М. Г. Крошкин.

Внегалактическая астрономия Искать примеры произношения

раздел астрономии, изучающий небесные тела и их системы, находящиеся за пределами нашей звёздной системы - Галактики. Формированию этого раздела астрономии предшествовал длительный период выяснения того, какие типы небесных светил входят в состав нашей звёздной системы и какие находятся вне её. В конце 1-й четверти 20 в. было окончательно установлено, что наша звёздная система имеет конечные размеры и в то же время не исчерпывает собой всей звёздной Вселенной. Она получила название Галактика (с прописной буквы). Было доказано существование также и других звёздных систем, которые по своей замкнутости и независимому положению в пространстве получили названия галактик (со строчной буквы). Совокупность всех галактик, называемая метагалактикой (См. Метагалактика), представляет собой самую обширную систему из известных науке. Наиболее далёкие из ярчайших галактик, расстояния до которых удалось установить, находятся от нас на расстояниях, составляющих более миллиарда Парсек. Точное значение этого наибольшего расстояния указать невозможно, так как, во-первых, почти ежегодно становятся известными всё более и более удалённые объекты, а во-вторых, потому, что результат вычисления расстояний на основании величин, получаемых непосредственно из наблюдений, зависит от предполагаемых свойств пространства метагалактики, недостаточно хорошо изученных. Тем не менее можно утверждать, что самые далёкие из известных галактик не находятся у границ метагалактики.

Результаты исследований, полученные В. а., являются основным наблюдательным материалом для космологии (См. Космология). Изучая проявления природы в наиболее крупных масштабах, В. а. сталкивается с новыми, ранее неизвестными явлениями и, может быть, даже с новыми законами природы. Результаты В. а. существенно помогают изучению нашей Галактики. Это обусловлено тем, что другие галактики мы наблюдаем извне и в целом, а нашу Галактику мы вынуждены изучать, находясь внутри неё, что в ряде отношений труднее. Солнечная система находится внутри пылевого экваториального слоя Галактики, который сильно сокращает для нас зону видимости, особенно в направлениях вблизи плоскости галактического экватора. Другие же галактики видны целиком и в разных ракурсах в зависимости от их случайного поворота относительно нашего луча зрения. Но из-за дальности расстояния до галактик в них почти не наблюдаются по отдельности звёзды разных типов, из которых они состоят. Наоборот, данные о типах звёзд и об их движениях в нашей Галактике способствуют лучшему пониманию других звёздных систем.

Распределение галактик в пространстве неоднородно. Большинство их сосредоточено в тесных или в разбросанных скоплениях галактик, содержащих от десятков до десятков тысяч членов. Скорости движения галактик в скоплениях, измеренные по спектрограммам на основе эффекта Доплера, беспорядочны по направлениям и достигают 2000 км/сек. В некоторых случаях эти скорости столь велики, что могут оказаться достаточными для того, чтобы галактики покидали скопление. Ещё не решён вопрос, в какой мере распределение скоплений галактик в метагалактике можно считать однородным. С одной стороны, большинство галактик сосредоточено в скоплениях, а последние разбросаны беспорядочно, с другой стороны, резко выраженной асимметрии в распределении скоплений или резкого скучивания их не наблюдается. Вопрос о том, является ли реальная Вселенная однородной или неоднородной, важен для космологии.

Метагалактическое пространство между галактиками не пусто. В нём много мелких звёздных систем, отдельных звёзд, разреженного газа и космической пыли, а также космических лучей, кроме того, в нём отлична от нуля интенсивность полей - гравитационного, магнитного и т.д. Их изучение также входит в задачу В. а.

Английский астроном В. Гершель на рубеже 18 и 19 вв. впервые составил обширные каталоги светлых туманных пятен, видимых на небе. Исследования показали, что некоторые из них при наблюдении в сильный телескоп оказываются состоящими из звёзд. Однако, наряду с этим, было признано существование туманностей, состоящих из сплошной диффузной среды. Окончательно это было доказано во 2-й половине 19 в. при помощи спектрального анализа. Спектр некоторых туманностей оказался состоящим из ярких линий, принадлежащих разреженным газам; у других он оказался подобным спектру звёздных скоплений - непрерывным, с линиями поглощения, причём таких туманностей оказалось подавляющее большинство. Позднее выяснилось, что небольшая доля туманностей с таким спектром является не звёздными системами, а облаками космической пыли, светящейся отражённым светом ярких звёзд. В 20-х гг. 20 в. Э. Хабблу (США) удалось доказать, что и газовые и пылевые туманности встречаются уже среди сравнительно близких к нам объектов. Несколько раньше Х. Шепли (США) удалось определить расстояния до шаровых звёздных скоплений, из которых более далёкие с трудом "разлагаются" на звёзды даже в сильнейшие телескопы.

Природа остальных туманных пятен (а их огромное большинство; в каталогах содержится около 30 тыс. объектов до 15-й видимой звёздной величины) выяснилась к середине 20-х гг. 20 в. Ещё в середине 19 в. английский учёный У. Росс обнаружил спиральную структуру у наиболее крупных из них, но всё многообразие и тонкость структуры туманностей выявились лишь после введения в астрономическую практику фотографии и повышения мощности телескопов. Шведский астроном К. Лундмарк, наблюдая в спиральных туманностях едва заметные вспышки новых звёзд (См. Новые звёзды), имеющих в действительности колоссальную светимость, пришёл к заключению, что спиральные туманности находятся за пределами нашей Галактики. В дальнейшем выяснилось, что звёзды, вспышки которых наблюдались в галактиках, были чаще всего не новыми звёздами, а в сотни раз более яркими сверхновыми звёздами (См. Сверхновые звёзды), вследствие чего оценки расстояний до спиральных туманностей, проведённые Лундмарком, пришлось увеличить. В нашей Галактике со времени изобретения телескопа ни одна сверхновая звезда не наблюдалась. Поэтому изучение этих интересных небесных тел в основном опирается на результаты В. а.

Позднее Э. Хаббл более точно определил расстояния и размеры спиральных галактик М31 (Большая туманность в созвездии Андромеды), М33 (в созвездии Треугольника) и NGC 6822 (в созвездии Стрельца). Он доказал большое сходство этих звёздных систем с нашей Галактикой, установив, что все они содержат звёзды одинаковых типов, одинаковые звёздные скопления и диффузные газовые туманности, новые звёзды. Эти открытия, как и многие последующие в области В. а., были выполнены с помощью крупнейших в мире телескопов, установленных в США.

В 1924-25 на фотографиях ближайших спиральных галактик были обнаружены переменные звёзды, в том числе Цефеиды, светимость которых связана известным образом с периодом изменения их блеска. Таким образом, определив светимость по наблюдаемому изменению блеска и сравнив её с видимой звёздной величиной этих небесных тел, можно оценить расстояния до цефеид, а следовательно, и до галактик, содержащих их. (Размеры галактик малы сравнительно с расстояниями до них.) Метод цефеид для определения расстояний до удалённых звёздных систем наиболее точен, но применим лишь к ближайшим из них. Для более далёких, вплоть до самых удалённых из числа наблюдаемых в настоящее время, наилучшим является метод определения расстояния до галактик по величине смещения линий в спектре галактик, так называемого красного смещения (См. Красное смещение). В 1924 К. Лундмарк и К. Вирц, (Германия) обнаружили, что чем больше расстояние до галактики, тем сильнее линии её спектра смещены к красному концу. Позже величина красного смещения, вызванного удалением от нас (эффект Доплера), была уточнена. При определении расстояний этим методом принимают, что на каждый миллион Парсек расстояния красное смещение возрастает примерно на 100 км/сек (закон Хаббла). На это систематическое смещение, обусловленное расширением метагалактики, накладываются смещения спектральных линий (в сторону красного или синего конца спектра), обусловленные индивидуальными скоростями галактик, которые, однако, обычно не превосходят 1000 км/сек. Из-за этого метод определения расстояний по красному смещению спектральных линий ненадёжен в применении к близким галактикам.

Задачами В. а. являются фотографическое изучение формы и вида галактик, их классификация (основы последней заложил Хаббл), измерение звёздной величины и цвета галактик в целом и отдельных их участков, а также исследование закономерностей строения и состава скоплений галактик. В ближайших галактиках изучают число и распределение различных объектов разной светимости. При помощи спектрального анализа изучаются скорости движения и законы вращения галактик, что даёт материал для определения их масс. Изучается и сравнивается химический состав звёзд, входящих в галактики. При фотографировании галактик применяются электронные усилители яркости, сокращающие время экспонирования и позволяющие фотографировать очень слабые объекты.

Новые возможности получила В. а., применяя методы радиоастрономии (См. Радиоастрономия). С их помощью были открыты принципиально новые объекты и явления в Метагалактике. К числу таких объектов относятся так называемые радиогалактики, для которых характерно необычайно мощное излучение в радиодиапазоне, происходящее, по-видимому, от элементарных частиц колоссальных энергий, движущихся в магнитных полях некоторых галактик, а также Квазары, природа которых изучена ещё недостаточно. Однако уже сейчас из очень больших красных смещений в спектрах большинства наблюдаемых квазаров заключают, что многие из них находятся на расстояниях в несколько миллиардов Парсек. Светимостью и спектром с квазарами сходны так называемые квазизвёздные галактики, звездоподобные объекты, не имеющие сильного, а может быть и умеренного, радиоизлучения. Их число в десятки раз больше, чем число квазаров. В то же время есть много общего между бурными процессами в квазарах и в ядрах некоторых галактик.

В СССР наиболее обширные теоретические и наблюдательные исследования в области В. а. ведутся на Бюраканской астрофизической обсерватории АН Армянской ССР и в Государственном астрономическом институте им. П. К. Штернберга Московского университета. См. также Галактики.

Лит.: см. при ст. Галактики.

Б. А. Воронцов-Вельяминов.

Гамма-астрономия Искать примеры произношения

раздел наблюдательной внеатмосферной астрономии, связанный с исследованиями небесных тел, испускающих Гамма-излучение. Начало Г.-а. было положено в апреле 1961, когда аппаратура, установленная на американском искусственном спутнике Земли "Эксплорер-11", зарегистрировала гамма-излучение, идущее от центра Галактики. Г.-а. непосредственно примыкает к рентгеновской астрономии (См. Рентгеновская астрономия), и граница между ними весьма условна. Обычно принято к Г.-а. относить исследования в спектральной области, в которой энергия квантов превышает 30 кэв

(что соответствует длинам волн короче 0,3 Å). Земная атмосфера полностью непрозрачна для этого излучения вплоть до высот 30-40 км (см. рис.).

Поэтому аппаратура для наблюдений гамма-излучений небесных объектов (гамма-телескопы) устанавливается, как правило, на искусственных, спутниках Земли, а при исследованиях жёсткого излучения с энергией около 100 кэв используются высотные аэростаты, способные поднять аппаратуру до 40 км. Наблюдаемые потоки гамма-излучения крайне малы, что требует многочасовых наблюдений. В качестве приёмников излучения применяются сцинтилляционные счётчики (См. Сцинтилляционный счётчик), иногда в комбинации с Гейгера - Мюллера счётчиками, площадью до 100 см2. Разрабатываются приборы с кристаллическим детектором площадью 103-104 см2.

Исследования в области Г.-а. позволили обнаружить вплоть до 100 Мэв равномерный (изотропный) космический фон. Обнаружено также излучение, приходящее от центра Галактики и от 2 дискретных источников излучения: Крабовидной туманности (спектр измерен до 0,5 Мэв) и источника в созвездии Скорпиона (до 50 Мэв). Источник в Крабовидной туманности является остатком сверхновой звезды, вспыхнувшей в 1054, а источник в Скорпионе - остатком вспышки новой звезды. Природа изотропного фона, а также излучения от центра Галактики полностью ещё не выяснена. Ведутся поиски аннигиляционного излучения с энергией 511 кэв, которое возникает при аннигиляции пары электрон-позитрон (см. Аннигиляция и рождение пар). Обнаружение такого излучения может явиться указанием на существование во Вселенной антивещества. Можно предполагать, что наблюдения с гамма-телескопами большой площади позволят продолжить исследования спектра дискретных источников рентгеновского излучения в область больше 10 кэв. Исследования в области Г.-а. важны для космологии (наблюдения горячего межгалактического газа), для выяснения природы активности ядер сейфертовских галактик, квазаров, нейтронных звёзд, дискретных источников галактического и внегалактического рентгеновского и гамма-излучения. Работы по Г.-а. ведутся в СССР, США, а также в Японии.

В. Г. Курт.

Пропускание земной атмосферы в области рентгеновского и гамма-излучения. По оси ординат отложена высота, до которой проникает половина падающего излучения.

Галактическая астрономия Искать примеры произношения
Геодезическая астрономия Искать примеры произношения

раздел практической астрономии (См. Практическая астрономия), наиболее тесно связанный с геодезией и картографией; изучает теорию и методы определения широты φ и долготы λ места, а также азимута а направления на земной предмет и местного звёздного времени s из астрономических наблюдений при геодезических и картографических работах. Т. к. эти наблюдения производятся в полевых условиях, то Г. а. часто называют полевой астрономией. Точка земной поверхности, в которой широта, долгота и азимут определены из астрономических наблюдений, называется астрономическим пунктом (См. Астрономический пункт). Предмет Г. а. состоит в изучении: а) переносных астрономических инструментов, б) теорий наблюдения небесных светил и методов определения φ, λ, а и s и в) методов обработки результатов астрономических наблюдений. В Г. а. применяются малые, или переносные, астрономические инструменты, позволяющие измерять зенитные расстояния и направления на небесные светила, а также горизонтальные углы между различными направлениями. Основными инструментами в Г. а. служат: Универсальный инструмент, полевой Хронометр и радиоприёмник для приёма сигналов времени.

В Г. а. разработан ряд способов астрономических наблюдений, различающихся в зависимости от того, какие величины определяются (время, широта, долгота или азимут), какие светила для этого наблюдаются (звёзды или Солнце) и как и какие величины непосредственно измеряются при наблюдениях небесного светила (зенитное расстояние z, высота h, азимут а* и момент Т прохождения светила через избранную плоскость). Выбор этих способов зависит от поставленной задачи, точности её решения, наличия инструментов и т. д. При этом Небесные координаты наблюдаемого светила, а именно его прямое восхождение а и склонение α, считаются известными; они приводятся в астрономических ежегодниках и каталогах звёзд.

Соединив на небесной сфере (рис.) полюс PN, зенит места Z и наблюдаемое светило а дугами больших кругов, получим т. н. параллактический треугольник PN, в котором угол при вершине Z есть дополнение азимута а* светила до 180° и угол при вершине PN равен часовому углу t светила.

Все способы астрономических определений основаны на решении параллактического треугольника после измерения его некоторых элементов (см. Сферическая астрономия). Так, измерив зенитное расстояние Z светила в момент Т по хронометру и зная широту φ места, можно определить часовой угол t светила из выражения

cosz = sinφ sin δ + cosφ cosδ cost

и по равенству t = s - α= Т + u - α найти поправку u к показанию хронометра и местное звёздное время s. Зная поправку хронометра u и измерив зенитное расстояние Z светила, можно определить широту φ места. Поправку хронометра выгодно определять из наблюдений звёзд в первом вертикале (См. Первый вертикал), а широту места - в меридиане, т. е. в кульминации небесного светила. Если измерить зенитные расстояния двух звёзд, расположенных в меридиане к Ю. или С. от зенита места, то тогда

φ = δS - zS = δN - zN.

Особенно удобны способы, основанные на измерении окулярным микрометром (См. Окулярный микрометр) малых разностей зенитных расстояний северных и южных звёзд в меридиане (см. Талькотта способ). В способах соответственных высот отмечают моменты T1 и T2 прохождений двух звёзд через один и тот же Альмукантарат. Если известна φ, то получают u (см. Цингера способ), а если известна u, то определяют φ (см. Певцова способ). Из наблюдений серии равномерно распределённых по азимуту звёзд на постоянной высоте 45° или 30° определяют φ и λ (см. Мазаева способ).

Азимут а* небесного светила определяют, измеряя его часовой угол или зенитное расстояние и зная широту φ места наблюдения. Прибавляя к азимуту наблюдаемого светила (обычно Полярной звезды) горизонтальный угол Q между ним и земным предметом, получают азимут а земного предмета.

Разность долгот двух пунктов равна разности местных звёздных времён в этих пунктах или разности поправок хронометра, отнесённых к одному физическому моменту по известному ходу часов (См. Ход часов), так что λ2 - λ1 = s2 - s1 = (T + u2) - (Т + u1) = u2 - u1 + T2 - T1. Долготы λ отсчитываются от меридиана Гринвича. Поэтому λ = s - S = u - U. Поправки хронометра u относительно местного звёздного времени s определяют из наблюдений звёзд, а U относительно гринвичского звёздного времени S - из приёма ритмических сигналов времени по радиотелеграфу. В современных высокоточных работах ошибки определения широты, долготы и азимута не превышают ± 0,5".

Лит.: Цингер Н. Я., Курс практической астрономии, М., 1924: Вентцель М. К., Полевая астрономия, ч. 1-2, М., 1938-40; Блажко С. Н. . Курс практической астрономии, М. - Л., 1951; Цветков К. А., Практическая астрономия, 2 изд., М., 1951; Кузнецов А. Н., Геодезическая астрономия, М., 1966.

А .В. Буткевич.

Рис. к ст. Геодезическая астрономия.

Звёздная астрономия Искать примеры произношения

раздел астрономии, исследующий общие закономерности строения, состава, динамики и эволюции звёздных систем и изучающий реализацию этих закономерностей в нашей звёздной системе - Галактике (См. Галактика). Конкретные исследования др. галактик (См. Галактики) и иных внегалактических объектов выделились в середине 20 в. из З. а. в особый раздел астрономии - внегалактическую астрономию (См. Внегалактическая астрономия). В отличие от астрофизики, которая изучает природу отдельных звёзд и туманностей, З. а. исследует коллективы (ансамбли) этих объектов. З. а. подразделяется на звёздную статистику, звёздную кинематику и звёздную динамику.

Каждая звезда может быть охарактеризована рядом параметров; некоторые из них зависят от положения звезды относительно Солнца. Такими, видимыми, характеристиками являются: сферические координаты звезды (в З. а. обычно принимают галактическую систему небесных координат (См. Небесные координаты)); видимая Звёздная величина звезды в различных фотометрических системах; наблюдаемый Показатель цвета; избыток цвета; значение поглощения и поляризации света; расстояние до звезды; собственное движение звезды (См. Собственные движения звёзд); Параллакс; тангенциальная и лучевая скорости; видимая скорость вращения. Часть этих характеристик, а именно: поглощение и поляризация света, избыток цвета, - зависит главным образом от количества и свойств поглощающей свет пылевой материи, расположенной между Солнцем и звездой. Др. параметры являются истинными характеристиками звезды, не зависящими от взаимного положения звезды и наблюдателя. Это: координаты звезды, определяющие её пространственное положение в Галактике, абсолютная звёздная величина, светимость, истинные показатели цвета, спектральный класс, температура, масса, радиус, компоненты скорости в Галактике, истинная скорость вращения.

В определениях звёздных характеристик З. а. тесно взаимодействует с др. разделами астрономии - астрометрией (См. Астрометрия) и астрофизикой (См. Астрофизика).

Звёздная статистика. Исследование строения Галактики, выяснение характеристик звёздного населения в различных её областях может проводиться с помощью методов математической статистики. Таким путём изучают распределение звёзд, обладающих теми или иными характеристиками, в различных направлениях или в различных областях Галактики, в том числе и в коллективных членах Галактики - рассеянных звёздных скоплениях, шаровых скоплениях, звёздных ассоциациях. Статистические закономерности, получаемые таким путём, называются функциями распределения. Например, функция блеска определяет распределение звёзд по видимым звёздным величинам. Функции светимости показывают, как распределены по светимостям звёзды в различных областях Галактики. Наиболее надёжно эта функция определена для окрестностей Солнца и для близких рассеянных скоплений. Функция звёздной плотности выражает распределение звёзд по расстояниям в данном телесном угле. Функция поглощения света показывает, как изменяется поглощение света звёзд (выраженное в звёздных величинах) в данном направлении в зависимости от расстояния. Многие функции распределения в звёздной статистике связаны между собой уравнениями. Например, функцию блеска, функцию звёздной плотности, функцию светимости и функцию поглощения связывают уравнениями, называют основными уравнениями звёздной статистики (См. Звёздная статистика). Уравнения звёздной статистики всегда содержат наряду с функциями распределения видимых характеристик функции распределения истинных характеристик звёзд. Одной из важных задач звёздной статистики является использование этих уравнений для нахождения функций истинных характеристик по полученным из наблюдений функциям видимых характеристик. Например, решая уравнение, связывающее функцию распределения видимой поверхностной звёздной плотности в шаровом скоплении с функцией истинной пространственной звёздной плотности в этом скоплении, находят вторую из этих функций по найденной из наблюдений первой функции. Важную роль играют исследования многомерных распределений звёздных характеристик, т. к. многие характеристики статистически между собой связаны. Обычно эти статистические зависимости являются сложными и потому их представляют главным образом при помощи диаграмм. Например, статистическую зависимость между спектрами звёзд и их абсолютными звёздными величинами представляется диаграммой, которая выявляет ряд последовательностей в звёздном населении, имеющих эволюционный смысл (см. Герцшпрунга - Ресселла диаграмма). Существенное значение для характеристики звёздного населения имеют также диаграммы "цвет - абсолютная звёздная величина", "цвет - видимая звёздная величина", "масса - абсолютная звёздная величина", двухцветная диаграмма (для двух цветов, каждый из которых характеризует соотношение энергии излучения в двух различных областях спектра звезды).

Звёздная статистика исследует также распределения характеристик переменных звёзд (вид кривой изменения блеска, период и амплитуда изменения блеска, амплитуда изменения показателя цвета и др.), двойных звёзд (угловое расстояние между компонентами, разность видимых величин, различие спектров компонентов, элементы орбиты и др.), кратных звёзд и звёздных скоплений (диаметр, численность звёзд, законы видимого и пространств. распределения плотности, диаграмма "цвет - видимая величина" и др.), тёмных туманностей (размеры, коэффициент прозрачности) и др. объектов Галактики. Т. к. звёзды каждого спектрального класса, каждого типа (например, различного типа переменные звёзды) располагаются в пространстве особым образом (Галактика как бы состоит из множества взаимопроникающих подсистем), то в звёздной статистике многие исследования проводятся для звёзд каждого спектрального класса или типа отдельно.

При определениях расстояний до звёзд на основе сравнения их абсолютной и видимой звёздной величины учитывают поглощение света в пространстве. Величину этого поглощения оценивают по несоответствию цвета звезды её спектральному классу, которое вызывается покраснением цвета звезды из-за влияния поглощающей свет материи. Вследствие неточности оценок поглощения света, которое особенно велико для далёких звёзд в направлениях, близких к плоскости симметрии Галактики, расстояния до большинства звёзд определяются неуверенно. Это одна из причин, усложняющих задачи звёздной статистики.

Сложность задач звёздной статистики связана также с тем, что большая часть звёзд Галактики, вследствие огромных её размеров и значительного поглощения света около главной плоскости, не может наблюдаться. Даже в ближайших галактических окрестностях Солнца некоторая часть звёзд низкой светимости ещё не выявлена. Тем не менее общее число доступных наблюдениям звёзд так велико, что определение всех характеристик этих звёзд - непомерно большая наблюдательная задача. Поэтому многие астрономические обсерватории мира ведут работу по т. н. плану избранных площадей (предложенному в 1906 голландским астрономом Я. Каптейном), согласно которому определение характеристик слабых звёзд должно в основном производиться лишь в 206 отдельных площадках, распределённых равномерно по всему небу, и ещё дополнительно в 46 площадках, представляющих особый интерес. При этом принимается, что закономерности, которые выводятся на основании звёздных характеристик, определённых в площадках Каптейна, должны соответствовать тем закономерностям, которые можно было бы получить, исследуя характеристики всех звёзд неба. Международный астрономический союз распределил работу по определению различных характеристик звёзд между обсерваториями разных стран. Часть этой работы выполняется на обсерваториях СССР.

Звёздная кинематика. Методы кинематики (раздела механики) и математической статистики позволяют изучать распределения видимых кинематических характеристик звёзд (собственное движение, лучевая скорость, тангенциальная скорость, пространственная скорость, видимая скорость вращения), находить распределения истинных кинематических характеристик (компоненты остаточной скорости, истинная скорость вращения) и делать выводы об общих закономерностях движения звёздной системы как целого.

Хотя звёздная система состоит из отдельных тел - звёзд, разделённых большими расстояниями, в её строении и движении наряду со свойствами прерывности наблюдаются и свойства непрерывности. Пусть произвольная точка пространства, занимаемого звёздной системой, окружена сферой с объёмом, малым в сравнении с объёмом всей звёздной системы, но настолько большим, чтобы в неё попало достаточно много (например, 1000) звёзд; тогда среднее значение скоростей всех звёзд, находящихся в сфере, называется скоростью центроида этих звёзд. С изменением координат точки в звёздной системе скорость соответствующего ей центроида изменяется медленно и почти плавно. Поэтому в звёздной системе можно рассматривать непрерывное поле скоростей. Естественно, что в общем случае скорость звезды не совпадает со скоростью её центроида. В нашей Галактике, в частности, Солнце движется по отношению к своему центроиду. Эта скорость называется остаточной скоростью Солнца и входит в измеренные с Земли (движущейся вместе с Солнцем) скорости звёзд. Разработаны методы определения остаточной скорости Солнца по лучевым скоростям и собственным движениям звёзд. Хотя эти два метода используют наблюдательный материал, получаемый совершенно разным путём (один из астрофизических, а другой из астрометрических измерений), они приводят к хорошо согласующимся результатам. Остаточная скорость Солнца (по отношению к совокупности всех звёзд ярче 6-й звёздной величины) близка к 19,5 км/сек и направлена в точку неба с координатами: прямое восхождение 18 ч и склонение около + 30° (стандартный апекс Солнца). Исследование скоростей центроидов показывает, что они совершают круговые движения параллельно галактические плоскости вокруг оси симметрии Галактики. Угловая скорость круговых движений центроидов в различных местах различна, т. е. Галактика вращается не как твёрдое тело; при этом она не расширяется и не сжимается. Лишь центральные области Галактики вращаются, по-видимому, как твёрдое тело, с периодом около 30 млн. лет. На расстоянии 5 килоПарсек (кпс) от центра период вращения Галактики равен 130 млн. лет, а в районе Солнца, т. е. на расстоянии около 10 кпс от центра, - около 250 млн. лет. Линейная скорость вращения центроида Солнца вокруг центра Галактики составляет приблизительно 250 км/сек. Если из наблюдаемой скорости звезды геометрически вычесть остаточную скорость Солнца, то получится скорость звезды относительно центроида Солнца - пекулярная скорость звезды. Если из пекулярной скорости звезды вычесть скорость центроида звезды по отношению к центроиду Солнца, то будет получена остаточная скорость звезды - её скорость по отношению к её собственному центроиду. Геометрическая сумма скорости центроида относительно центра инерции звёздной системы и остаточной скорости звезды равна полной скорости звезды относительно центра инерции системы. Исследование распределения остаточных скоростей звёзд показывает, что в каждой точке Галактики, если не рассматривать очень больших остаточных скоростей, выполняется условие симметрии: число звёзд с остаточными скоростями, имеющими данное направление, равно числу звёзд с противоположно направленными остаточными скоростями. Средние же квадратичные остаточных скоростей в разных направлениях различны. Наибольшая средняя квадратичная - у компонента остаточных скоростей вдоль направления на центр Галактики, следующая по величине - у компонента вдоль направления вращения Галактики, наименьшая - у компонента, перпендикулярного плоскости симметрии Галактики. Для окрестности Солнца средние квадратичные величины компонентов остаточных скоростей в трёх указанных направлениях составляют соответственно около 41 км/сек, 28 км/сек и 21 км/сек, если совместно рассматриваются звёзды, относящиеся к разным составляющим Галактики.

Для больших остаточных скоростей, превышающих для окрестностей Солнца 70 км/сек, условие симметрии перестаёт выполняться. Отсутствуют большие остаточные скорости, имеющие направления, составляющие острые углы с направлением вращения центроида вокруг центра Галактики. В то же время встречаются такие скорости, направленные в сторону, противоположную вращению Галактики. Это явление, называется асимметрией остаточных скоростей, объясняется тем, что полная скорость звезды, равная геометрической сумме скорости центроида и остаточной скорости звезды, тем больше, чем меньше угол между этими скоростями и чем больше, в случае малого угла, остаточная скорость. При остаточной скорости, большей 70 км/сек, направленной в сторону вращения Галактики, полная скорость звезды превзошла бы критическая скорость для окрестностей Солнца, и звезда покинула бы Галактику. Критическая скорость в районе Солнца составляет около 320 км/сек.

Основным наблюдательным материалом звёздной кинематики (См. Звёздная кинематика) являются лучевые скорости и собственного движения звёзд. С 1946 для исследования кинематики Галактики широко используются также контуры спектральной радиолинии с длиной волны λ = 21 см, излучаемой нейтральным водородом, который расположен главным образом вблизи плоскости симметрии Галактики. Радиоизлучение не поглощается пылевой материей Галактики. Кроме того, вследствие различной угловой скорости центроидов в Галактике, лучевые скорости находящихся на луче зрения масс водорода различны и расположенные близко массы водорода не поглощают излучения, посылаемого далёкими массами. Благодаря этому радиоизлучение на волне 21 см от самых отдалённых областей Галактики достигает земных радиотелескопов и регистрируется ими. Статистические методы изучения контуров линии λ = 21 см позволили уточнить закон вращения Галактики, исследовать распределение плотности нейтрального водорода, наметить расположение спиральных ветвей Галактики.

Всё многообразие объектов, составляющих население звёздных систем, разделяется на два типа населения, причём каждое из них занимает определённые области звёздных систем. Звёздное население 1-го типа располагается близ плоскостей симметрии спиральных галактик, концентрируясь при этом в спиральных ветвях и избегая областей ядра. Звёздное население 2-го типа преобладает в областях спиральных галактик, удалённых от их плоскости симметрии, оно образует ядра спиральных галактик; из него составлены эллиптические галактики и чечевицеобразные галактики типа SO. К 1-му типу населения относятся звёзды: бело-голубые гиганты и сверхгиганты, долгопериодические цефеиды, новые и сверхновые звёзды, а также рассеянные звёздные скопления, водородные облака, пылевые туманности. Звёздное население 2-го типа слагается из звёзд: красных субкарликов, красных гигантов, короткопериодических цефеид, а также из шаровых скоплений.

Идея разделения населения галактик более подробно разработана в представлении о подсистемах звёздных систем. Звёздные подсистемы, в которые входят все объекты того или иного спектрального класса или типа, отличаются индивидуальными значениями характеристик пространственного расположения (градиентами звёздной плотности вдоль радиуса Галактики и перпендикулярного её плоскости симметрии) и особенностями распределения скоростей объектов. Подсистемы различных объектов взаимно проникают друг в друга, и звёздная система является, т. о., совокупностью подсистем. Каждая подсистема приближённо представляет собой сплюснутый эллипсоид вращения, причём сплюснутость у различных подсистем различна. В соответствии с этим их относят к трём составляющим Галактики: плоской, сферической и промежуточной.

Звёздная динамика. Этот раздел З. а. изучает закономерности движений звёзд в силовом поле звёздной системы и эволюцию звёздных систем вследствие движений звёзд. Звёздные системы являются самогравитирующими, т. е. Совокупность звёзд системы сама создаёт то гравитационное силовое поле, которое управляет движением каждой звезды. Гравитационное поле звёздной системы имеет сложную структуру. Вследствие того что гравитационная сила точечной массы убывает пропорционально квадрату расстояния, т. е. не очень быстро, в каждой точке большей части объёма звёздной системы суммарная гравитационная сила всех объектов, составляющих звёздную систему, значительно превосходит гравитационную силу ближайшего к этой точке объекта. С другой стороны, в непосредственной окрестности звёзд, плотных звёздных скоплений или др. компактных объектов сила притяжения такого объекта сравнима с суммарной гравитационной силой всех остальных объектов или может даже превосходить её. Т. о., исследуя структуру силового поля звёздной системы, приходится рассматривать его как сумму 1) регулярного поля системы, т. е. поля, создаваемого системой в целом, отражающего свойства непрерывности звёздной системы, и 2) иррегулярного поля, создаваемого силами, возникающими при сближениях звёзд, которое отражает свойства прерывности, дискретности строения звёздной системы. Иррегулярные силы носят характер случайных сил. Чем больше тел в звёздной системе, тем большую роль в её динамике играют регулярные силы и тем меньше роль иррегулярных сил.

При формировании звёздной системы ей, как правило, свойственно нестационарное состояние. Под действием регулярного и иррегулярного силового поля системы в ней изменяется распределение звёзд и распределение скоростей звёзд. Постепенно звёздная система приближается к стационарному состоянию. Т. к. в системе, содержащей большое число звёзд, регулярное поле действует быстрее иррегулярного, сначала достигается стационарность в регулярном поле. В этом состоянии регулярное поле уже не изменяет распределение звёзд и их скоростей. Время, необходимое для перехода в состояние, стационарное в регулярном поле, обратно пропорционально корню квадратному из плотности материи в системе. Для звёздных систем это время составляет десятки или сотни миллионов лет. В состоянии, стационарном лишь в регулярном поле, иррегулярное поле продолжает изменять распределение звёзд и их скоростей, приближая систему к состоянию, стационарному также и в иррегулярном поле. Звёздная система не может достигнуть полной стационарности, т. к. в результате действия иррегулярных сил некоторые звёзды приобретают скорость, большую критической, и покидают систему. Этот процесс продолжается непрерывно. Состояние, при котором все изменения распределений звёзд и их скоростей являются следствием только непрерывного медленного ухода звёзд из системы, называется состоянием, квазистационарным в иррегулярном поле. Время достижения квазистационарного состояния называется временем релаксации. Время релаксации для рассеянных скоплений составляет величину порядка десятков или сотен миллионов лет, шаровых скоплений - порядка миллиардов лет, галактик - порядка тысяч или десятков тысяч миллиардов лет. Время полного распада невращающейся звёздной системы под действием её иррегулярного поля приблизительно в 40 раз больше, чем время релаксации. Чем быстрее вращается звёздная система, тем медленнее протекает процесс распада.

Возраст наблюдаемых рассеянных скоплений, как правило, превосходит их время релаксации. Большинство наблюдаемых рассеянных скоплений достигло квазистационарного состояния и многие из них успели сильно обеднеть в результате ухода из них звёзд. Имеются основания считать, что большая часть звёзд Галактики принадлежала в прошлом рассеянным скоплениям и является результатом их распада. Число полностью распавшихся рассеянных скоплений должно во много раз превосходить число рассеянных скоплений, существующих ныне в Галактике. Возраст шаровых скоплений сравним со временем их релаксации. По-видимому, у шаровых скоплений квазистационарного состояния достигли центральной области, где время релаксации меньше, а периферийные области находятся в состоянии, стационарном в регулярном поле. Возраст галактик не превосходит десятков млрд. лет, время релаксации для них в сотни или тысячи раз больше; поэтому галактики далеки от достижения квазистационарного состояния. Некоторые из них, а именно неправильные галактики, даже находятся в нестационарном состоянии либо вследствие того, что это очень молодые системы, либо вследствие деформаций, вызванных взаимодействием при сближении галактик.

Звёздная система, достигшая состояния, стационарного в регулярном поле, имеет плоскость симметрии и перпендикулярную ей ось симметрии. Звёздная система с равным нулю главным моментом вращения в состоянии, стационарном в регулярном поле, может быть сферически симметрична. В квазистационарном состоянии она обязательно сферически симметрична. Траектории звёзд в сферически симметричной системе плоские. В общем случае они незамкнуты и витки одной траектории заполняют кольцо. В системе с плоскостью и осью симметрии траектории не являются плоскими кривыми. Витки одной траектории заполняют трёхмерную область - тор.

Основной задачей звёздной динамики (См. Звёздная динамика) является исследование закономерностей строения и эволюции звёздных систем на основе изучения действующих в них сил. Одним из методов таких исследований является построение теоретических моделей звёздных систем для разных стадий их эволюции, соответствующих конкретным наблюдаемым звёздным системам, в том числе нашей Галактике, др. галактикам, скоплениям галактик, а также рассеянным и шаровым звёздным скоплениям. В теоретической модели должны быть полностью согласованы взаимно влияющие друг на друга распределение звёзд и их движения. Строят также эмпирические модели Галактики и др. галактик, основанные на наблюдаемых данных о распределении плотности материи в них. В эмпирических моделях нет полного согласования распределения звёзд и их движений.

Историческая справка. Начало З. а. было положено в конце 18 в. английским астрономом В. Гершелем, который выполнил несколько статистических исследований ("обозрений") звёздного неба. Произведя подсчёты числа звёзд, видимых в поле зрения телескопа в разных участках неба, он обнаружил явление галактической концентрации, т. е. возрастание числа звёзд по мере приближения к галактическому экватору. Это указало на сплюснутость нашей звёздной системы. Гершель построил первую модель нашей звёздной системы - Галактики, определил направление движения Солнца по отношению к окрестным звёздам. Он открыл большое число двойных звёзд, обнаружил у некоторых из них орбитальное движение и таким образом доказал физическую природу их двойственности, а также то, что закон всемирного тяготения И. Ньютона справедлив и за пределами Солнечной системы. В 1847 русский астроном В. Я. Струве, изучая строение Галактики, высказал утверждение о существовании поглощения света в межзвёздном пространстве и об увеличении звёздной плотности (пространственной) при приближении к плоскости симметрии Галактики. В середине 19 в. русским астроном М. А. Ковальский и английским астроном Дж. Эри разработали аналитические методы определения скорости Солнца по собственным движениям звёзд. В конце 19 в. Х. Зелигер и К. Шварцшильд в Германии развили методы исследования пространственного распределения звёзд по их подсчётам. В начале 20 в. голландский астроном Я. Каптейн обнаружил преимущественное направление движений звёзд и предложил гипотезу о существовании двух движущихся навстречу друг другу потоков звёзд. Затем Шварцшильд выдвинул предположение об эллипсоидальном законе распределения скоростей (остаточных) звёзд, более естественно объясняющее наблюдаемые закономерности в движениях звёзд. К этому же времени (до 1922) относятся выполненные Каптейном исследования строения Галактики на основании результатов звёздных подсчётов и анализа собственных движений звёзд. Несмотря на то, что ещё в середине 19 в. Струве пришёл к заключению о существовании поглощения света в Галактике, в начале 20 в. преобладало убеждение о полной прозрачности межзвёздного пространства. Поэтому кажущееся поредение звёзд по мере удаления от Солнца по всем направлениям, вызываемое главным образом поглощением света в межзвёздном пространстве, принималось за действительное уменьшение звёздной плотности по всем направлениям от Солнца. В моделях Каптейна Солнце находилось в центре Галактики.

В 1-й четверти 20 в. астрономы Гарвардской обсерватории (США) закончили обзор спектров сотен тысяч звёзд, а голландский астроном Э. Герцшпрунг и американский астроном Г. Ресселл обнаружили в это же время разделение звёзд поздних спектральных классов на гиганты и карлики и построили диаграмму "спектр - светимость", отражающую статистическую зависимость между спектром звезды и её светимостью. В 1918 американский астроном Х. Шепли нашёл, что центр системы шаровых скоплений расположен далеко от Солнца. Очевидно, что именно центр огромной системы шаровых скоплений (а не рядовая звезда - Солнце) должен совпадать с центром Галактики. Шепли определил направление на центр Галактики и оценил расстояние его от Солнца. В 1917 американские астрономы Дж. Ричи и Х. Кёртис обнаружили в туманностях, имеющих вид спиралей, неожиданно появляющиеся, а затем исчезающие слабые звёзды и определили, что это Новые звёзды, аналогичные тем, которые время от времени наблюдаются в Галактике. Стало ясно, что спиральные туманности находятся на громадных расстояниях, вне Галактики, и имеют сравнимые с ней размеры. В 1924-26 американский астроном Э. Хаббл при помощи 2,5-м телескопа разложил (разрешил) на звёзды внешние области трёх спиральных туманностей, в том числе туманности Андромеды и туманности Треугольника, а в 1944 американский астроном У. Бааде при помощи 5 телескопа разрешил на звёзды несколько эллиптических туманностей и ядра упомянутых спиральных туманностей. Этим окончательно было доказано, что, помимо нашей Галактики, существуют др. звездные системы; их назвали галактиками.

В 1927 голландский астроном Я. Оорт разработал метод исследования вращения Галактики и на основании данных о собственных движениях и лучевых скоростях звёзд обнаружил явление вращения, определил его основные характеристики. Направление на центр вращения совпало с направлением на центр системы шаровых скоплений. В 1932 советский астроном К. Ф. Огородников развил теорию кинематики звёздных систем, в частности Галактики, в которой звёздная система рассматривается не просто как собрание отдельных движущихся звёзд, а как единая система, в движении которой участвует весь объём занимаемого ею пространства. В 1915-20 Дж. Джине и А. Эддингтон (Великобритания), а позднее В. А. Амбарцумян (СССР) и С. Чандрасекар (США) разработали основы звёздной динамики. Б. Линдблад (Швеция) вывел основные динамические соотношения для Галактики. В 1930 американский астроном Р. Трамплер, исследуя большое число рассеянных скоплений, определил, что их расстояния искажаются наличием поглощения света в межзвёздном пространстве, и оценил поглощение света для направлений, близких к плоскости симметрии Галактики. Хаббл исследовал распределение галактик по всему небу. Оказалось, что по мере приближения к галактическому экватору число наблюдаемых галактик быстро убывает, и вблизи галактического экватора (примерно между широтами -10° и +10°) галактик почти нет. Это показало, что поглощающая свет материя сосредоточена в сравнительно тонком слое у плоскости симметрии Галактики. В 1938-47 Амбарцумян установил, что поглощающая свет материя в Галактике имеет клочкообразную структуру.

40-е гг. 20 в. характеризуются исследованиями, которые определили особенности распределения и кинематики звёзд различных типов. Выяснилось, что распределение и кинематика тесно связаны с проблемами происхождения и эволюции звёзд данного типа, звёздных скоплений, межзвёздного газа и пыли. Амбарцумян обнаружил, что горячие звёзды-гиганты (спектральные классы 0 и В0 - В2) образуют группировки, получившие название звёздных ассоциаций (См. Звёздные ассоциации). Звёздные ассоциации неустойчивы, следовательно входящие в их состав звёзды - молоды. Их возраст оказался равным 105-107 лет, т. е. намного меньше возраста Земли, Солнца, большей части звёзд Галактики, самой Галактики и др. галактик, который оценивается в миллиарды лет (до десяти миллиардов лет). Т. о., существование звёздных ассоциаций свидетельствует о том, что звездообразование в Галактике продолжается.

Советские астрономы П. П. Паренаго, Б. В. Кукаркин и их сотрудники изучили распределение и кинематику звёзд различных типов, в том числе переменных звёзд, и установили, что Галактика представляет собой совокупность подсистем, каждая из которых имеет свои особенности. Бааде указывал на существование двух типов звёздного населения. Большое значение для З. а. имело развитие методов радиоастрономических наблюдений. Радионаблюдения позволили изучить структуру ядра Галактики, уточнить положение её плоскости симметрии. Исследование профилей линии с длиной волны λ = 21 см, излучаемой нейтральным водородом (первая работа опубликована С. ван де Холстом, С. Мюллером и Я. Оортом в 1954), дало возможность определить закон вращения Галактики для значительного диапазона расстояний и получить сведения о расположении спиральных ветвей в Галактике. Начало 2-й половины 20 в. характеризуется усиленным развитием исследований в области звёздной динамики - изучением роли регулярных и иррегулярных сил в звёздных системах и получением оценок возраста различных систем, изучением распределения скоростей звёзд, построением моделей сферических и вращающихся систем, определением особенностей орбит звёзд в звёздных системах, исследованием различного вида неустойчивости звёздных систем. Важное значение приобрели методы прямого решения звёздно-динамических задач при помощи численного решения на ЭВМ уравнений движения n тел.

В 20 в. исследования в области З. а. ведутся на большинстве астрономических обсерваторий многих стран мира; в СССР - в Москве, Ленинграде, Абастумани, Бюракане, Тарту и др.

Лит.: Чандрасекар С., Принципы звездной динамики, пер. с англ., М., 1948; Кукаркин Б. В., Исследование строения и развития звездных систем на основе изучения переменных звезд, М. - Л., 1949; Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954; Огородников К. Ф., Динамика звездных систем, М., 1958; Зонн В., Рудницкий К., Звездная астрономия, пер. с польск., М., 1959; Курс астрофизики и звёздной астрономии, т. 2, М., 1962, гл. 2, 18-21; Строение звездных систем, пер. с нем., М., 1962; Кинематика и динамика звёздных систем, М., 1968; Курт Р., Введение в звездную статистику, пер. с англ., М., 1969; Pah1en Е. von, Lehrbuch der Stellarstatistik, Lpz., 1937; Smart W. М., Stellar dynamics, Camb., 1938; Trumpler R., Weaver Н., Statistical astronomy, Berk. - Los Ang., 1953.

Т. А. Агекян.

Кометная астрономия Искать примеры произношения

раздел астрономии, посвященный исследованиям комет. К. а. занимается: позиционными, фотометрическими, поляризационными и др. наблюдениями комет; разработкой физических теорий комет; изучением законов движения комет, в частности возмущений, оказываемых на их движение большими планетами; разработкой гипотез происхождения комет; моделированием комет в лабораториях и космосе. В исследованиях К. а. широко используются методы астрофизики, небесной механики, астрометрии. Проблемы К. а. в СССР разрабатываются в астрономических учреждениях Москвы, Ленинграда, Алма-Аты, Киева и др. Очерк развития К. а. см. в ст. Кометы.

Космическая астрономия Искать примеры произношения
Метеорная астрономия Искать примеры произношения

раздел астрономии, посвященный изучению структуры, происхождения и эволюции метеорного вещества (См. Метеорное вещество) в межпланетном пространстве. Исследование структуры и движения метеорного вещества ведётся путём оптических и радиолокационных наблюдений метеоров, наблюдений Зодиакального Света (См. Зодиакальный свет), регистрации ударов метеорных тел с помощью датчиков, установленных на искусственных спутниках Земли и космических зондах, изучения движения метеорных потоков методами небесной механики. В СССР работы по М. а. ведутся в Москве, Душанбе, Киеве, Одессе, Харькове, Казани; за рубежом в США (Гарвардская и Смитсоновская обсерватории), в ЧССР, Великобритании, Австралии.

Мореходная астрономия Искать примеры произношения

раздел практической астрономии (См. Практическая астрономия), удовлетворяющий нужды судовождения. Предметом М. а. является разработка способов определения по небесным светилам и навигационным искусственным спутникам Земли (см. Навигационный спутник) места судна в море и поправки приборов курсоуказания. М. а. входит в состав науки о судовождении (См. Судовождение).

Определение места судна в море, т. е. его географической широты φ и долготы λ, производится с помощью измерения высот светил над видимым морским горизонтом или над плоскостью искусственного горизонта, создаваемого на судне различными способами. Применение угломерных приборов с искусственным горизонтом расширило возможности определения места судна астрономическими способами, а также повысило точность измерения высот и светил.

Каждое значение h истинной высоты светила (см. Небесные координаты.) позволяет получить одно уравнение для определения координат судна, поэтому для определения места судна в море необходимо не менее двух измерений высот светил. Решение сферического треугольника с вершинами в полюсе мира, зените наблюдателя и месте светила, т. е. так называемого параллактического треугольника (См. Параллактический треугольник), приводит к уравнению:

sinh = sinφ ․ sinδ + cosφ ․ cosδ ․ cos(tгр + λ), (1)

где δ и tгр - склонение и гринвичский часовой угол светила соответственно. Величины δ и tгр выбираются из морского астрономического ежегодника на момент наблюдений. Долгота λ отсчитывается к В. от гринвичского меридиана: tгр + λ = tм есть местный часовой угол светила. Когда светило находится на меридиане наблюдателя в верхней кульминации (tм = 0), то уравнение (1) даёт следующее решение: φ = δ ± (90° - Н), где Н - высота светила в верхней кульминации, т. н. меридианальная высота; знак минус берётся в случае кульминации светила к С. от зенита.

Если уравнение (1) решить относительно tм, то получится следующее выражение:

cos tм = sinh ․ secφ ․ secδ - tgφ ․ tgδ. (2)

Зная широту φ своего места, можно по формуле (2) получить и долготу λ = tм - tгр.

По двум измерениям высот можно определить и широту, и долготу места; при большем числе измерений можно также оценить и точность произведённого определения. Пользуясь т. н. счислимым местом судна, т. е. координатами (φе, λе) места, найденными графически или аналитически по курсу и пройденному расстоянию, можно каждое из полученных уравнений представить в виде уравнений ошибок или геометрически истолковать его как высотную линию положения. Уравнение линии положения имеет вид:

Δh = Δφ․cosA + ΔW ․ sinA. (3)

Для построения линии положения совмещают счислимое место корабля (φе, λе) с началом координат (см. рис.) и откладывают по одной оси приращение широты Δφ, а по другой - приращение отшествия ΔW = Δλ․cosφ. Если отложить от счислимого места по направлению, определяемому азимутом А светила, разность Δh = h - he между высотой светила, найденной из наблюдений, и его счислимой высотой, вычисленной по счислимым координатам, то найдётся точка К, называемая определяющей точкой. Линия положения проходит через определяющую точку по направлению, перпендикулярному азимуту светила.

Место судна определяется точкой пересечения двух линий положения, постоянных и наблюдаемых двух светил. В случае большего числа наблюдений линии положения, как правило, не пересекаются в одной точке, а образуют фигуру погрешности. Вероятнейшее место судна может быть найдено по этой фигуре или графическими приёмами, или аналитически.

Определение поправки приборов курсоуказания производится сравнением наблюдённого пеленга на светило с азимутом А этого светила, рассчитанным по известному его склонению δ, часовому углу tм = tгр + λ и широте места наблюдения. Азимут А может быть вычислен по формуле:

ctgA = cosφ · tgδ · cosectм - sinφ · ctg tм. (4)

В тех случаях, когда одновременно с пеленгованием светила измеряется и его высота, азимут может быть рассчитан по одной из формул:

sinA = cosδ · sintм · sech, (5)

cosA = secφ · sinδ · sech - tgφ · tgh. (6)

Для расчёта азимута светила изданы специальные таблицы.

Высота светила над видимым морским горизонтом измеряется Секстантом (секстаном).

Отсчёт, полученный на лимбе секстанта, для определения высоты светила h над истинным горизонтом исправляется путём введения инструментальной поправки секстанта, поправки индекса и поправок, учитывающих наклонение видимого горизонта, рефракцию, полудиаметр светила и его параллакс.

Историческая справка. Уже в глубокой древности для ориентирования на незнакомой местности и определения направления пути использовались наблюдения небесных светил. Рост промышленности и торговли и связанное с этим расширение мореплавания явились причиной начавшегося в 15 в. развития методов и конструирования приборов для определения места судна в открытом море. Широкое распространение получили астрономические инструменты, приспособленные для наблюдений светил на суднах, - градштоки, отражательные Квадранты, астролябии (См. Астролябия), армиллярные сферы (См. Армиллярная сфера). Были вычислены эфемериды Солнца и планет, необходимые при выполнении наблюдений. В это время из астрономических наблюдений умели определять только широту места. В 16-17 вв. были высказаны идеи определения долготы, основанные на наблюдениях угловых расстояний между Луной и звёздами и затмений спутников Юпитера. Точный метод определения долготы места, в основе которого лежит вычисление разности между местным часовым углом светила и его значением на момент наблюдений для меридиана Гринвича (λ = tм - tгр), вошёл в практику М. а. лишь во 2-й половине 18 в., когда был сконструирован хронометр.

С начала 19 в. разрабатывается теория совместного определения широты и долготы места; в 1808 нем. математик К. Гаусс предложил метод, требующий решений 5 уравнений; в 1824 рус. геодезист Ф. Ф. Шуберт опубликовал оригинальный метод совместного определения φ и λ. Однако эти методы оказались неудобными для практического применения. В 1843 американский моряк Т. Сомнер опубликовал способ определения места судна, основанный на том, что изолиния, соответствующая значению измеренной высоты, т. е. круг равных высот, на небольшом протяжении изображается на карте прямой линией (см. Сомнера способ). Высотные линии положения он строил по точкам их пересечения с двумя параллелями, близкими к параллели счислимого места. Русский военный моряк А. А. Акимов предложил (опубликовал в 1849) иной способ построения линии положения - по одной точке её пересечения со счислимой параллелью и по её направлению; при этом впервые было использовано свойство перпендикулярности высотной линии положения к направлению на светило. В 1875 французский моряк М. Сент-Илер предложил способ проведения высотной линии положения через определяющую точку перпендикулярно направлению на светило. Этот способ употребляется и в 20 в. Большое значение в разработке современных методов М. а. и в последовательном применении обобщённого метода линий положения к решению астрономических задач имеют работы советских учёных Н. Н. Матусевича и В. В. Каврайского.

Лит.: Матусевич Н. Н., Мореходная астрономия, П., 1922; Белобров А. П., Мореходная астрономия, Л., 1954; Курс кораблевождения, т. 1-6, Л., 1958-68; Космические маяки и навигации, , 1964; Dutton's. Navigation and piloting, 2 ed., Annapolis, 1958; Kershner R. B., Transit program results, "Asronautics", 1961, v. 6, № 5.

А. Н. Мотрохов.

Рис. к ст. Мореходная астрономия.

Нейтринная астрономия Искать примеры произношения

новый раздел наблюдательной астрономии, связанный с поиском и исследованием потоков Нейтрино от источников внеземного происхождения. Нейтрино является единственным видом излучения, который приходит к земному наблюдателю из самых глубоких недр Солнца (См. Солнце) и звёзд и несёт в себе информацию об их внутренней структуре и о происходящих там процессах. Современные средства регистрации нейтрино допускают возможность обнаружения нейтринного излучения лишь от Солнца и сверхновых звёзд (См. Сверхновые звёзды) нашей Галактики.

Нейтринная астрономия Солнца. Существование мощного потока нейтрино от Солнца вытекает из современной концепции происхождения и строения Солнца, согласно которой его светимость полностью обеспечивается энергией термоядерного превращения водорода в гелий в центральной области Солнца. Как показывают расчёты моделей Солнца (см. Звёздные модели), основной вклад в энерговыделение даёт водородный цикл, а доля углеродно-азотного (CNO) цикла составляет не более 1% (см. Термоядерные реакции). Синтез каждого атома 4He сопровождается испусканием двух электронных нейтрино νe. а полный поток нейтрино, определяемый светимостью, составляет у поверхности Земли 6,5․1010 нейтрино/см2сек, причём нейтрино уносят Нейтринная астрономия3% энергии термоядерного синтеза. Наблюдение солнечных нейтрино явилось бы убедительным подтверждением основных идей термоядерной эволюции Солнца. Измерение потоков нейтрино от различных реакций с помощью соответствующего набора детекторов составляет полную программу исследования внутренней структуры Солнца. Поскольку поток солнечных нейтрино испытывает сезонные вариации с амплитудой около 7% (что связано с наличием эксцентриситета у земной орбиты), наблюдение этих вариаций служило бы доказательством того, что регистрируемые нейтрино - солнечные. Др. способ определения направления прихода нейтрино состоит в измерении углового распределения электронов, образующихся при захвате нейтрино в детекторе (см. ниже): электроны из-за несохранения чётности (См. Чётность) в β-распаде должны вылетать преимущественно в направлении на Солнце.

Первые эксперименты по наблюдению солнечных нейтрино осуществлены американским учёным Р. Девисом с сотрудниками в 1967-68 с помощью радиохимического нейтринного детектора, содержащего 610 т жидкого перхлорэтилена (C2Cl4). Детектор устанавливался под землёй на глубине 1480 м для подавления фона космических лучей (См. Космические лучи). Регистрация нейтрино основана на методе, предложенном в 1946 Б. М. Понтекорво. Солнечные нейтрино с энергией > 0,814 Мэв образуют в реакции 37Cl + νе → е- + Ar радиоактивный Ar с периодом полураспада 35 сут. Согласно расчётам, основной вклад (76%) в эффект должны давать нейтрино наиболее высокой энергии (до 14 Мэв) от распада 8В → 8Ве + e+ + νe в самой редкой ветви водородного цикла. Поток этих нейтрино зависит от температуры Т как T20, поэтому хлорный детектор является уникальным "термометром" для измерения температуры центральной области Солнца Tc. Теория предсказывала значение Tc ≈ 15·106 K.

В экспериментах Девиса 37Ar накапливался в детекторе в течение 100 сут, затем извлекался продуванием через жидкость гелия, адсорбировался активированным углём при температуре 77 К и помещался в пропорциональный счётчик, который подсчитывал количество распавшихся атомов 37Аг. Измерения, полученные в 1972 (как и первые измерения 1967-68), показали, что нейтринный эффект в несколько раз ниже предсказываемого теорией и не превосходит фоновый эффект детектора (в детекторе под действием солнечных нейтрино накапливалось не более 8 атомов 37Ar за эксперимент вместо ожидаемых 45).

Хотя солнечные нейтрино не были с достоверностью зарегистрированы, результаты экспериментов являются важным достижением Н. а., так как показывают, что современные представления о солнечных нейтрино в чём-то неверны. Решение загадки солнечных нейтрино можно искать в трёх направлениях. 1) Возможно, Tc ниже теоретического значения, предсказываемого стандартными моделями Солнца, и составляет около 13․106 K, т. е. лежит за порогом чувствительности "нейтринного термометра"; это означает, что Солнце устроено иначе, чем считалось до сих пор. 2) Может оказаться, что при расчётах моделей используются неверные значения скоростей ядерных реакций; это означало бы, что шкала "нейтринного термометра" неправильно отградуирована. 3) "Нейтринный термометр" вообще может оказаться "испорченным", если по пути к Земле с нейтрино что-то происходит, например распад (если бы они оказались нестабильными частицами), осцилляции (переводящие нейтрино в невзаимодействующие с хлором состояния) и т.п. Для окончательного решения проблемы необходимо повысить чувствительность хлорного детектора, а также провести дополнительно эксперименты с детекторами, чувствительными к нейтрино меньших энергий, например 7Li, 71Ga, 87Rb, 55Mn. Др. важная задача Н. а. - наблюдение солнечных нейтрино от реакции 1H + p + e-2H + νe (с помощью детекторов 37Cl и 7Li), которая обязательно сопутствует водородному циклу. Их обнаружение явилось бы доказательством протекания водородного цикла на Солнце, исключило бы гипотезы об аномальных свойствах нейтрино и тем самым подтвердило правильность заключения о том, что CNO-цикл не вносит заметного вклада в генерацию энергии на Солнце (если бы CNO-цикл вносил основной вклад, в детекторе Девиса должно было бы образовываться около 300 атомов 37Ar).

Нейтринные вспышки. Потоки нейтрино от др. "спокойных" звёзд, даже самых близких, очень малы и не могут быть зарегистрированы современными методами. Вместе с тем вполне осуществимой представляется задача наблюдения нейтринных вспышек от звёзд в момент их гравитационного коллапса. Наиболее вероятными объектами являются сверхновые звёзды нашей Галактики, непосредственно перед взрывом которых происходит коллапс центрального ядра. Нейтринная вспышка может быть зарегистрирована даже в том случае, если сверхновая оптически ненаблюдаема. Длительность такой вспышки Нейтринная астрономия0,01 сек (потоки нейтрино у Земли 1010-1012 нейтрино/см2 за вспышку). Измеряя время запаздывания начала вспышки, зарегистрированного детекторами в разных местах земного шара, можно установить направление прихода нейтринного излучения. Вспышки могут быть зарегистрированы водородсодержащим сцинтиллятором массой в несколько сотен т в виде характерной серии импульсов. Такие эксперименты планируются в СССР и в США.

Нейтринная астрофизика. Необходимость исследования астрофизических явлений с участием нейтрино породила новую ветвь в астрофизике - нейтринную астрофизику. По современным представлениям, нейтринное излучение, которое сильно растет с увеличением температуры, оказывает решающее влияние на картину эволюции звёзд на завершающих стадиях, когда температура в недрах звезды достигает Нейтринная астрономия 109 K и выше. Это связано с тем, что испускание нейтрино происходит из самых горячих, внутренних областей звезды (так как пробеги нейтрино в веществе значительно больше размеров звезды), и поэтому именно нейтринное излучение определяет скорость потери энергии такими звёздами. Примером является влияние гипотетического электронно-нейтринного взаимодействия (предсказываемого универсальной теорией слабого взаимодействия; см. Нейтрино) на эволюцию ядра планетарных туманностей, учёт которого позволяет согласовать наблюдаемые данные о времени эволюции с теоретическими расчётами; в свою очередь, возможность такого согласования является аргументом в пользу существования этого взаимодействия.

Когда температура в центре звезды достигает значения Нейтринная астрономия1011 К, пробег νe становится сравнимым с размерами звезды и при дальнейшем увеличении температуры звезда становится непрозрачной для нейтрино. Поскольку, однако, пробеги нейтрино остаются ещё несравнимо большими пробегов фотонов, перенос энергии в звезде осуществляется посредством нейтринного газа (нейтринная теплопроводность) и потери энергии продолжают определяться нейтринным излучением. При температурах ≥ 2․1011 К звёзды становятся непрозрачными и для мюонных нейтрино νμ. Такие стадии жизни звезды наиболее загадочны и интересны. Предполагается, что нейтринное излучение играет решающую роль в механизме взрыва сверхновых.

Развитие Н. а. и нейтринной астрофизики обещает дать ценную информацию не только о строении небесных тел, но по природе самого нейтрино и свойствах слабого взаимодействия.

Лит.: Нейтрино. Сб. ст., пер. с англ., М., 1970 (Современные проблемы физики); Бакал Дж., Солнечные нейтрино, "Успехи физических наук", 1970, т. 101, в. 4, с. 739-53; Азимов А., Нейтрино - призрачная частица атома, пер. с англ., М., 1969, с. 92-105.

Г. Т. Зацепин, Ю. С. Копысов.

Практическая астрономия Искать примеры произношения

раздел астрометрии (См. Астрометрия), посвященный учению об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений. В зависимости от условий, в которых решаются задачи П. а., она подразделяется на геодезическую астрономию (См. Геодезическая астрономия), мореходную астрономию (См. Мореходная астрономия) и авиационную астрономию (См. Авиационная астрономия). Способы П. а. основываются на правилах сферической астрономии (См. Сферическая астрономия) и использовании звёздных каталогов, составлением которых занимается фундаментальная астрометрия.

П. а. возникла в глубокой древности под влиянием задач хозяйственной жизни человеческого общества.

Применяемые в П. а. инструменты позволяют измерять углы в горизонтальной и вертикальной плоскостях и фиксировать моменты прохождения светил через Вертикалы и Альмукантараты. Среди этих инструментов: универсальный инструмент, зенит-телескоп, вертикальный круг, переносной пассажный инструмент, зенитная фотографическая труба, мореходный и авиационный секстанты и др. (см. Астрономические инструменты и приборы). Для измерения времени служат кварцевые часы и морские хронометры. При определении долгот используется аппаратура для приёма радиосигналов времени.

В П. а. применяются следующие способы определения местного времени s (что равносильно определению поправки часов u), широты φ долготы λ и азимута А направления на земной предмет. (Ниже использованы обозначения: а - азимут, z - зенитное расстояние, α - прямое восхождение, δ - склонение, t - часовой угол небесного светила, s - местное время, Т - показания часов в момент наблюдений.)

1) Определение u и φ по измерениям z светила σ. Из параллактического треугольника PZσ (Р - полюс мира, Z - зенит, σ- место светила; рис. 1) следует, что

cosz = sinφ sinδ + cosφ cosδcost, (1)

где

t = Т + u - α. (2)

Найдя в астрономическом каталоге α и δ наблюдаемого светила и измерив его зенитное расстояние z в момент Т, из уравнений (1) и (2) можно вычислить поправку часов u, если известна φ, или вычислить φ, если известна u. Если неизвестны u и φ, то решение уравнений (1) и (2) ведут способом последовательных приближений или наблюдают две звезды: одну вблизи меридиана, другую - вблизи первого вертикала. Полученные две системы уравнений (1) и (2) решают совместно. Для моментов кульминаций справедливы уравнения:

φ = δs + Zs и φ = δN - ZN (3)

(индексы S и N обозначают светила, кульминирующие, соответственно, к югу и северу от зенита). Т. к. измерить z строго в меридиане нельзя, то измеряют его вблизи меридиана, вводя при вычислениях необходимую поправку.

2) Определение u и φ по наблюдениям пар звёзд на равных зенитных расстояниях z. В 1874 русский геодезист Н. Я. Цингер предложил способ определения u по наблюдениям моментов прохождения двух звёзд через один и тот же альмукантарат (см. Цингера способ). Звёзды наблюдаются вблизи первого вертикала: одна - на востоке, другая на западе, симметрично относительно меридиана. Аналогичный способ для определения φ по наблюдениям пары звёзд на равных зенитных расстояниях вблизи меридиана предложил в 1887 русский путешественник М. В. Певцов (см. Певцова способ). Оба способа характеризуются простотой наблюдений и высокой точностью получаемых результатов.

3) Совместное определение u и φ. Советские учёные В. В. Каврайский (1924-36) и А. В. Мазаев (1943-45) предложили способы совместного определения u и φ (см. Каврайского способ и Мазаева способ). По способу Каврайского наблюдаются четыре звезды на попарно равных зенитных расстояниях z; по способу Мазаева - серия звёзд в альмукантарате с z = 45° или z = 30°.

4) Определение φ по способу Талькотта. Этот способ, предложенный в 1857 американским геодезистом А. Талькоттом, основан на измерении малой разности зенитных расстояний двух звёзд, кульминирующих по разные стороны от зенита (см. Талькотта способ). Полусумма правых и левых частей равенств (3) даёт:

. (4)

Звёзды выбираются так, чтобы разность их зенитных расстояний была в пределах диаметра рабочей части поля зрения трубы, т. е. не превышала 10-15', а разность прямых восхождений отличалась бы на 5-20 мин (при наблюдениях обеих звёзд в верхней кульминации). Для наблюдений труба зенит-телескопа или универсального инструмента устанавливается на среднее зенитное расстояние пары в азимуте 0° для наблюдения звезды, кульминирующей к югу от зенита, и 180° - к северу от него. Величина Zs - ZN измеряется окулярным микрометром. Способ нашёл широкое применение, в частности на международных станциях, изучающих движение земных полюсов.

5) Определение u и φ из наблюдений на зенитной фотографической трубе. В некоторых обсерваториях для служб времени (См. Служба времени) и служб широты (См. Служба широты) определяют u и φ из совместных наблюдений на фотографических зенитных трубах. Изображение звезды фиксируется на движущейся с её скоростью фотографической пластинке с маркировкой на ней моментов времени. Звёзды наблюдают в узкой зенитной зоне, ограниченной рабочей частью поля зрения трубы. Ось инструмента постоянно направлена в зенит, что контролируется ртутным горизонтом.

6) Определение u пассажным инструментом. Этот способ широко применяется в практике служб времени и при высокоточных определениях долгот. Наблюдаются моменты прохождений серии звёзд через меридиан с регистрацией их или контактным микрометром, или с помощью фотоумножителей. Поправки определяются по формуле

u = α - Т. (5)

Подобный способ применительно к универсальному инструменту предложил русский геодезист Н. Д. Павлов (1912). В некоторых случаях определение u производится по наблюдению прохождений звёзд в вертикале Полярной (способ Деллена (См. Дёллен)).

7) Определение λ. Восточная долгота места наблюдения связана со всемирным временем S и местным s соотношением:

λ = s - S = Т + u - S; (6)

u - определяется одним из изложенных выше способов, а S - путём приёма радиосигналов времени, транслируемых в течение суток многими радиостанциями.

8) Определение А. Наиболее распространённый способ основан на измерении универсальным инструментом горизонтального угла между направлениями на Полярную Мσ (рис. 2) и земной предмет М и вычислении азимута Полярной в момент наблюдения s. Для этого служит соотношение:

tgα, (7)

где t = s - α. Азимут А предмета находится из уравнения

А = а + М - Мσ. (8)

В геодезической практике часто применяется способ определения азимута, основанный на наблюдениях моментов прохождения звёзд с большими z (50°-70°) вблизи меридиана.

9) Определение φ и λ способом высотных линий положений, предложенным американским моряком Т. Сомнером в 1843 (см. Сомнера способ). В мореходной и авиационной астрономии, где требуется меньшая точность, но большая быстрота в определении φ и λ, широко применяется способ высотных линий положения, сущность которого ясна из рис. 3. Находясь в точке m, географические координаты которой необходимо определить, измеряют зенитное расстояние z1 небесного светила σ1 (с координатами α1 и δ1) и вычисляют географические координаты проекции ∑1, светила на поверхность Земли - т. н. географические места светила - по формулам φ1 = δ; λ1 = α1 - S (долгота восточная). Окружность радиуса z1 с центром в ∑1 проходит на глобусе через точку m. Измерив z2 другого светила, проводят другую окружность радиусом z2 с центром в ∑2; в одной из двух точек пересечения этих окружностей расположена искомая точка m (выбор нужной точки не представляет затруднений, т.к. приближённое. место наблюдения бывает известно). На практике пользуются не глобусом, а картой, прочерчивая на ней отрезки кривых, отождествляемые с дугами окружности вблизи их пересечений. Эти отрезки называют высотными линиями положений или линиями Сомнера (см. Позиционная линия).

Все проблемы П. а. имеют большое значение для астрономии, геодезии, геофизики. Определения φ, λ и А необходимы для ориентирования триангуляционных сетей, служащих опорой для картографических работ и для изучения фигуры Земли. Изучение изменяемости φ привело к установлению периодических и вековых движений земных полюсов. Переопределение долгот обсерваторий в разные эпохи доставляет необходимые данные для изучения дрейфа континентов.

Лит.: Блажко С. Н., Курс практической астрономии, 3 изд., М. - Л., 1951; Белобров А. П., Мореходная астрономия, Л., 1954; Воробьев Л. М., Астрономическая навигация летательных аппаратов, М., 1968.

В. П. Щеглов.

Рис. 1 к ст. Практическая астрономия.

Рис. 2 к ст. Практическая астрономия.

Рис. 3 к ст. Практическая астрономия.



Словари, в которых найден искомый текст:
 Большая советская энциклопедия (19)
 Толковый словарь Ефремовой (1)
 Словарь иностранных слов (1)
 Современный толковый словарь (14)
 Толковый словарь русского языка Ушакова (1)
 Кольер (21)
 Словарь Ожегова (1)


Примеры употребления слова "Астрономия" в русскоязычной прессе:

1.   Зачем нужны суперкомпьютеры Прогнозирование в финансовой и экономической областях Разведка нефти и газа Предсказание погоды, глобальных климатических изменений Инженерные расчеты Оптимизация транспортных потоков, проблема перегруженности дорог в мегаполисах Управление и логистика на крупных предприятиях Расчеты эффективности систем сгорания топлива, обтекания тел, аэродинамика, расчеты турбин, поведения газов и жидкостей Разработка фармацевтических препаратов, построение полупроводниковых приборов, генетика человека, астрономия, обработка больших баз данных *** Чемпион среди суперкомпьютеров Самый мощный в мире кластер стоит в Японском сейсмическом центре и используется для анализа сейсмической активности, прогнозирования землетрясений и их последствий. (Известия (московский выпуск), 2005-06-24)

2.   Тирупати, Индия) Наблюдения древних ученых и провидцев Индии отображены в нескольких разделах: математика, астрономия, геология, химия, физика, геммология, аюрведа. (Московская правда, 2005-07-05)

3.   Первым факультетом, где состоялось зачисление, стал физфак. А отделением - астрономия. (Московский комсомолец, 2005-07-13)

4.   Опираясь на эту традицию, сегодняшние исламские радикалы намерены объявить войну тем, кого они считают неверными. То есть всему немусульманскому миру Надо сказать, что в результате первых своих впечатляющих успехов мир ислама, который оказался наследником многих древних цивилизаций, включая и античную греческую, создал свою мощную великую цивилизацию и сумел многого достичь в сфере культуры, включая поэзию, архитектуру и даже некоторые области науки, будь то медицина или астрономия, не говоря уже о различных сферах повседневной жизни. (Новое время, 2005-07-18)

5.   Сменяя друг друга, они передавали древнюю мудрость новым жрецам и учили местных жителей выращивать злаки и овощи, строить города и храмы. Хотя "белые боги" правили довольно жестоко, особенно IV династия, зато они передали аборигенам шестнадцать полезных для них тайн: это умение строить жилье и храмы, владение техникой земледелия, животноводство, орошение, ремесленное искусство, судовождение, военное искусство, музыка, астрономия, поэзия, медицина, секреты бальзамирования, тайные науки, институт жречества, институт фараона, использование полезных ископаемых. (Красная звезда, 2005-07-23)

Еще примеры >>

Недвижимость в Испании
Еще>>