Англо-русский словарь и русско-английский словарь онлайн

Создать акаунт
Где искать:
Толковые словари
Большая советская энциклопедия

Результаты поиска (1-15 из 225)

Система Искать примеры произношения
(от греч. systema - целое, составленное из частей; соединение)

множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. Претерпев длительную историческую эволюцию, понятие С. с середины 20 в. становится одним из ключевых философско-методологических и специально-научных понятий. В современном научно-техническом знании разработка проблематики, связанной с исследованием и конструированием С. разного рода, проводится в рамках системного подхода (См. Системный подход), общей теории С., различных специальных теорий С., в кибернетике, системотехнике (См. Системотехника), системном анализе (См. Системный анализ) и т. д.

Первые представления о С. возникли в античной философии, выдвинувшей онтологическое истолкование С. как упорядоченности и целостности бытия. В древнегреческой философии и науке (Евклид, Платон, Аристотель, стоики) разрабатывалась идея системности знания (аксиоматическое построение логики, геометрии). Воспринятые от античности представления о системности бытия развивались как в системно-онтологических концепциях Б. Спинозы и Г. Лейбница, так и в построениях научной систематики. 17-18 вв., стремившейся к естественной (а не телеологической) интерпретации системности мира (например, классификация К. Линнея). В философии и науке нового времени понятие С. использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк - от отрицания системного характера научно-теоретического знания (Э. Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И. Г. Ламберт и др.).

Принципы системной природы знания разрабатывались в нем. классической философии: согласно И. Канту, научное знание есть С., в которой целое главенствует над частями; Ф. Шеллинг и Г. Гегель трактовали системность познания как важнейшее требование диалектического мышления. В буржуазной философии 2-й половины 19-20 вв. при общем идеалистическом решении основного вопроса философии содержатся, однако, постановки, а в отдельных случаях и решения некоторых проблем системного исследования - специфики теоретического знания как С. (Неокантианство), особенностей целого (Холизм, Гештальтпсихология), методов построения логических и формализованных систем (Неопозитивизм).

Общефилософской основой исследования С. являются принципы материалистической диалектики (всеобщей связи явлений, развития, противоречия и др.). Труды К. Маркса, Ф. Энгельса, В. И. Ленина содержат богатейший материал по философской методологии изучения С. - сложных развивающихся объектов (см. в ст. Системный подход).

Для начавшегося со 2-й половины 19 в. проникновения понятия С. в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч. Дарвина, теории относительности, квантовой физики, структурной лингвистики и др. Возникла задача построения строгого определения понятия С. и разработки оперативных методов анализа С. Интенсивные исследования в этом направлении начались только в 40-50-х гг. 20 в., однако многие конкретно-научные принципы анализа С. уже были сформулированы ранее в тектологии А. А. Богданова, в работах В. И. Вернадского (См. Вернадский), в праксеологии Т. Котарбиньского (См. Котарбиньский) и др. Предложенная в конце 40-х гг. Л. Берталанфи программа построения "общей теории систем" явилась одной из первых попыток обобщённого анализа системной проблематики. Дополнительно к этой программе, тесно связанной с развитием кибернетики, в 50-60-е гг. был выдвинут ряд общесистемных концепций и определений понятия С. (в США, СССР, Польше, Великобритании, Канаде и других странах).

При определении понятия С. необходимо учитывать теснейшую взаимосвязь его с понятиями целостности, структуры, связи, элемента, отношения, подсистемы и др. Поскольку понятие С. имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как С.), постольку его достаточно полное понимание предполагает построение семейства соответствующих определений - как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить основные системные принципы: целостности (принципиальная несводимость свойств С. к сумме свойств составляющих её элементов и невыводимость из последних свойств целого; зависимость каждого элемента, свойства и отношения С. от его места, функций и т. д. внутри целого), структурности (возможность описания С. через установление её структуры, т. е. сети связей и отношений С.; обусловленность поведения С. поведением её отдельных элементов и свойствами её структуры), взаимозависимости С. и среды (С. формирует и проявляет свои свойства в процессе взаимодействия со средой, являясь при этом ведущим активным компонентом взаимодействия), иерархичности (каждый компонент С. в свою очередь может рассматриваться как С., а исследуемая в данном случае С. представляет собой один из компонентов более широкой С.), множественности описания каждой С. (в силу принципиальной сложности каждой С. её адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определённый аспект С.) и др.

Существенным аспектом раскрытия содержания понятия С. является выделение различных типов С. (при этом разные типы и аспекты С. - законы их строения, поведения, функционирования, развития и т. д. - описываются в соответствующих специализированных теориях систем). Предложен ряд классификаций С., использующих разные основания. В наиболее общем плане С. можно разделить на материальные и абстрактные. Первые (целостные совокупности материальных объектов) в свою очередь делятся на С. неорганической природы (физические, геологические, химические и др.) и живые С., куда входят как простейшие биологические С., так и очень сложные биологические объекты типа организма, вида, экосистемы. Особый класс материальных живых С. образуют социальные С., чрезвычайно многообразные по своим типам и формам (начиная от простейших социальных объединений и вплоть до социально-экономической структуры общества). Абстрактные С. являются продуктом человеческого мышления; они также могут быть разделены на множество различных типов (особые С. представляют собой понятия, гипотезы, теории, последовательная смена научных теорий и т. д.). К числу абстрактных С. относятся и научные знания о С. разного типа, как они формулируются в общей теории С., специальных теориях С. и др. В науке 20 в. большое внимание уделяется исследованию языка как С. (лингвистические С.); в результате обобщения этих исследований возникла общая теория знаков - семиотика. Задачи обоснования математики и логики вызвали интенсивную разработку принципов построения и природы формализованных, логических С. (металогпка, метаматематика). Результаты этих исследований широко применяются в кибернетике, вычислительной технике и др.

При использовании других оснований классификации С. выделяются статичные и динамичные С. Для статичной С. её состояние с течением времени остаётся постоянным (например, газ в ограниченном объёме - в состоянии равновесия). Динамичная С. изменяет своё состояние во времени (например, живой организм). Если знание значений переменных С. в данный момент времени позволяет установить состояние С. в любой последующий или любой предшествующий моменты времени, то такая С. является однозначно детерминированной. Для вероятностной (стохастической) С. знание значений переменных в данный момент времени позволяет только предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношения С. и среды С. делятся на закрытые - замкнутые (в них не поступает и из них не выделяется вещество, происходит лишь обмен энергией) и открытые - незамкнутые (постоянно происходят ввод и вывод не только энергии, но и вещества). По второму закону термодинамики, каждая закрытая С. в конечном счёте достигает состояния равновесия, при котором остаются неизменными все макроскопические величины С. и прекращаются все макроскопические процессы (состояние максимальной энтропии и минимальной свободной энергии). Стационарным состоянием открытой С. является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но непрерывно продолжаются макроскопические процессы ввода и вывода вещества. Поведение названных классов С. описывается с помощью дифференциальных уравнений, задача построения которых решается в математической теории С.

Современная научно-техническая революция привела к необходимости разработки и построения автоматизированных С. управления народным хозяйством (промышленностью, транспортом и т. д.), автоматизированных С. сбора и обработки информации в национальном масштабе и т. д. Теоретические основы для решения этих задач разрабатываются в теориях иерархических, многоуровневых С., целенаправленных С. (в своём функционировании стремящихся к достижению определённых целей), самоорганизующихся систем (См. Самоорганизующаяся система) (способных изменять свою организацию, структуру) и др. Сложность, многокомпонентность, стохастичность и др. важнейшие особенности современных технических С. потребовали разработки теорий систем "человек и машина" (См. Система человек и машина), сложных систем (См. Сложная система), системотехники, системного анализа.

В процессе развития системных исследований в 20 в. более четко были определены задачи и функции разных форм теоретического анализа всего комплекса системных проблем. Основная задача специализированных теорий С. - построение конкретно-научного знания о разных типах и разных аспектах С., в то время как главные проблемы общей теории С. концентрируются вокруг логико-методологических принципов системного исследования, построения метатеории анализа С. В рамках этой проблематики существенное значение имеет установление методологических условий и ограничений применения системных методов. К числу таких ограничений относятся, в частности, т. н. системные парадоксы, например парадокс иерархичности (решение задачи описания любой данной С. возможно лишь при условии решения задачи описания данной С. как элемента более широкой С., а решение последней задачи возможно лишь при условии решения задачи описания данной С. как С.). Выход из этого и аналогичных парадоксов состоит в использовании метода последовательных приближений, позволяющего путём оперирования неполными и заведомо ограниченными представлениями о С. постепенно добиваться более адекватного знания об исследуемой С. Анализ методологических условий применения системных методов показывает как принципиальную относительность любого, имеющегося в данный момент времени описания той или иной С., так и необходимость использования при анализе любой С. всего арсенала содержательных и формальных средств системного исследования.

Лит.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; 26, ч. 2; т. 46, ч. 1; Ленин В. И., Полн. собр. соч., 5 изд., т. 18, 29; Хайлов К. М., Проблема системной организованности в теоретической биологии, "Журнал общей биологии", 1963, т. 24, № 5; Ляпунов А. А., Об управляющих системах живой природы, в сборнике: О сущности жизни, М., 1964; Щедровицкий Г. П., Проблемы методологии системного исследования, М., 1964; Вир Ст., Кибернетика н управление производством, пер. с англ., М., 1965; Проблемы формального анализа систем. ; Zadeh L. A., Polak Е., System theory, N. Y., 1969; Trends in general systems theory, ed. by G. J. Klir, N. Y., 1972; Laszlo Е., Introduction to systems philosophy, N. Y., 1972; Unity through diversity, ed. by W. Gray and N. D. Rizzo, v. 1-2, N. Y., 1973.

См. также лит. при ст. Системный анализ, Системный подход.

В. Н. Садовский.

Адаптивная система Искать примеры произношения
Адреналовая система Искать примеры произношения

хромаффинная система, совокупность клеток неврогенного происхождения (хромаффинных), продуцирующих Адреналин и норадреналин и встречающихся у человека и животных в виде более или менее крупных скоплений в различных образованиях симпатического отдела вегетативной нервной системы (например, в солнечном сплетении, почечном, околоаортальном и др.). Наиболее крупное и постоянное скопление хромаффинных клеток - мозговая часть надпочечников (См. Надпочечники). Поскольку адреналин и норадреналин являются гормонами, А. с. входит в состав эндокринной системы. См. Внутренняя секреция.

М. Н. Жильцова.

Амбулакральная система Искать примеры произношения
(от лат. ambulacrum - место для хождения, хождение)

воднососудистая система, система заполненных жидкостью сосудов (амбулакральных каналов) у иглокожих (См. Иглокожие), служащая для движения, дыхания, выделения и осязания. Состоит (рис.) из околоротового кольца а и радиальных каналов б. С наружной средой сообщается каменистым каналом е, отходящим от кольцевого и сообщающимся с внешней средой через пористую (мадрепоровую) пластинку ж. У радиальных каналов имеются боковые ветви, входящие в амбулакральные ножки в - цилиндрические трубочки с ампулой г у основания и с присоской или подошвой на наружном конце (у морских звёзд, ежей и др.) либо остроконечные (у морских лилий, офиур и др.). Наполняясь жидкостью, ножки сильно вытягиваются по направлению движения и присасываются к различным подводным предметам; сокращаясь затем, ножки резко укорачиваются, и тело животного несколько перемещается. У некоторых иглокожих в А. с. имеются придатки кольцевого канала в виде растяжимых мешков - полиевых пузырей д и железистых органов - тидемановых телец. А. с. развивается из зачатков Целома.

П. В. Матёкин.

Схема амбулакральной системы иглокожих (1) и схематический разрез амбулакральных ножек, радиального канала и ампул (2).

Антропогеновая система Искать примеры произношения
(пери́од)

антропоген, четвертичная система (период), последняя система стратиграфической шкалы (См. Стратиграфическая шкала) и последний период геологической истории Земли, продолжающийся поныне (см. Геохронология). Длительность А. с. (п.) оценивается от 600 тыс. - 1 млн. лет до 2,5-3,5 млн. лет.

История выделения и подразделение антропогеновой системы (периода). В 70-х гг. 18 в. немецкий учёный А. Вернер выделил рыхлые континентальные "наносы", соответствующие нынешней А. с., в "аллювиальную формацию". В 1823 английский учёный У. Бакленд подразделил её на две части: древнюю - "дилювий" (отложения "всемирного потопа") и более молодую - "аллювий" (ныне термин Аллювий имеет другое значение). В 1825-29 французский учёный Ж. Денуайе объединил "дилювий" и "аллювий" в одну систему, названную четвертичной. Четвертичную систему (период) он противопоставил всем более древним геологическим образованиям, подразделявшимся в то время на первичные. вторичные и третичные. В 1832 английский геолог Ч. Лайель ввёл для молодых морских отложений, непосредственно предшествующих современным, название Плейстоцен, позже распространённое и на континентальные отложения "дилювия". После установления факта общего похолодания климата и мощных оледенений суши (см. Ледниковая теория) в плейстоцене его стали называть также ледниковым периодом, а прежний "аллювий" - послеледниковым временем, современной эпохой, или Голоценом. В 20 в. название четвертичная система (период) стало анахронизмом, т.к. от остальной номенклатуры времён Денуайе давно отказались. Поэтому в 1922 русский геолог А. П. Павлов предложил новое название - А. с. (п.), или антропоген, созвучное названиям других систем кайнозойской группы - палеогену и неогену и отражающее важнейшее событие истории органического мира А. с. (п.) - появление и развитие человека и человеческого общества. Термин "А. с. (п.)" получил признание в СССР, хотя в советской геологической службе, как и за границей, принято ещё название четвертичная система (период).

За рубежом эталоном нижней границы А. с. считается основание морских калабрийских и континентальных средневиллафранкских слоев Италии. Многие советские исследователи включают в А. с. аналоги этих отложений в СССР - Акчагыльские слои и Апшеронские слои, но большинство следует принятой в СССР шкале, согласно которой они относятся к неогеновой системе (верхний плиоцен), а граница А. с. проводится под вышележащими бакинскими слоями (См. Бакинские слои) . Этими обстоятельствами обусловлены расхождения в оценках длительности А. с. (п.). Обычно применяется четырёхчленная схема деления А. с. на нижний (эо-), средний (мезо-), верхний (нео-) плейстоцен и голоцен, введённая в 1932 Комиссией по международной карте четвертичных отложений Европы (МЧКЕ). Объём подразделений плейстоцена толкуется при этом неодинаково, а некоторые учёные исключают из его состава эоплейстоцен. Даже при максимальной допускаемой длительности А. п. он оказывается намного короче любого другого геологического периода и для восстановления связной летописи его событий требуется гораздо более детальное расчленение. Поэтому наряду с методами биостратиграфии широко используется климатостратиграфическое расчленение А. с., основанное на многократных и резких изменениях климата. Признаками этих изменений служат: смена типов отложений, погребённые почвы, остатки тепло- и холодолюбивых животных и особенно споры и пыльца наземных растений.

Эталоном климатостратиграфии А. с. считается схема, составленная А. Пенком и Э. Брикнером в 1909 для Альп и затем дополненная Б. Эберлем и др. В ней выделено 5 этапов резких похолоданий, следствием которых было сильное разрастание ледников (оледенения, ледниковья, или гляциалы), разделенных потеплениями, когда ледники вновь сокращались до современных или ещё меньших размеров (межледниковья, или интергляциалы). Два оледенения (дунайское и гюнцское) относят к виллафранкскому (верхнеплиоценовому), а три (миндельское, рисское и вюрмское) - к более позднему времени (т. е. к А. п. в минимальном понимании). С этой альпийской схемой сопоставляются материковые оледенения средних широт, покрывавшие в фазы похолодания примерно одновременно громадные площади материков Северного полушария. Большинство этих сопоставлений приближённо или спорно, в связи с чем существует много местных схем со своими названиями ледниковий и межледниковий. Ледниковья, первоначально выделенные в альпийской и других схемах, сами распадаются на стадии оледенений, или стадиалы, во время которых ледники резко расширялись (наступали), и интерстадиалы, когда они не менее резко сокращались (отступали) в результате относительного потепления климата. Т. к. трудно объективно отличить крупные интерстадиалы от настоящих межледниковий, то разные исследователи насчитывают и неодинаковое число оледенений. Есть даже сторонники крайней точки зрения - так называемого Моногляциализма, считающие, что было всего одно антропогеновое оледенение со многими большими и малыми стадиями. Подавляющее большинство разделяет, однако, концепцию множественности оледенений, или Полигляциализма, насчитывая от 3 до 8 самостоятельных оледенений. При этом одни относят первые материковые оледенения к виллафранкскому (верхнеплиоценовому) времени, другие считают, что все оледенения происходили позже и относятся только к А. п. в минимальном понимании. Единой общепризнанной международной стратиграфической шкалы А. с. пока ещё нет, поэтому применяют различные, иногда даже взаимно противоречащие схемы. Важнейшие из них показаны в таблице сопоставления важнейших схем подразделения А. с. (п.), где обобщены также данные по абсолютному возрасту отложений. Для последних 30-25 тыс. лет в основу положены радиоуглеродные, для более отдалённого прошлого - калий-аргоновые и другие радиометрические определения.

Общая характеристика антропогеновой системы (периода). Наиболее яркой чертой А. п. является общее охлаждение климата Земли, на фоне которого периодически повторялись фазы резкого похолодания, особенно сильно сказывавшиеся в средних широтах материков Северного полушария, где возникали обширные ледниковые покровы. В большей части тропического и в экваториальном поясе климат менялся слабее и обстановка на суше всё время оставалась близкой к современной. Однако анализ илов, поднятых со дна Мирового океана, показывает, что даже под тропиками средние температуры морских вод колебались в пределах до 6°С, что устанавливается по смене прослоев с относительно более холодолюбивыми и теплолюбивыми видами фораминифер и по изменению в их раковинах содержания изотопов кислорода 16O и 18O.

Первые волны значительного похолодания (дунайское, гюнцское) относятся ещё к виллафранкскому времени (верхнему плиоцену). Некоторые исследователи считают, что тогда не только увеличивались горные ледники, но и возникали большие материковые оледенения (небраскское в Северной Америке, подлясское в Польше, древнейшие оледенения Литвы и Белоруссии). Большинство, однако, предполагает, что в указанное время климат был более тёплым, чем ныне, фазы похолодания слабыми и кратковременными, а названные оледенения были более молодыми. Как бы то ни было, эти похолодания сильно сказались на изменении органического мира. Субтропическая растительность в средних широтах уступала место лесам и степям почти современного облика; в моря Западной и Южной Европы проникали северные виды моллюсков, вымерло большинство неогеновых форм млекопитающих, за исключением отдельных реликтов (мастодонты рода Anancus и др.), и достигли расцвета новые, типично антропогеновые их группы - слоны (сем. Elephantidae - род Archidiskodon), настоящие быки (подсем. Boviпае - роды Leptobos, Bison), однопалые лошади (род Equuss. l.) и др.

С конца виллафранкского времени (верхнего плиоцена) и до окончания плейстоцена многократные волны похолодания, наряду с повсеместным увеличением горных ледников, уже, несомненно, сопровождались развитием обширных материковых оледенений Европы, Северной Азии и Северной Америки. Эти оледенения оставили после себя морены, флювиогляциальные и озёрно-ледниковые отложения, покрывающие обширные территории. Максимального распространения ледники достигали во время среднеплейстоценового - днепровского - оледенения Восточно-Европейской равнины, которое обычно сопоставляют с рисским в Альпах и иллинойсским в США (см. карту антропогеновых оледенений). Общая площадь ледников на Земле увеличилась тогда примерно втрое по сравнению с современной. Материковые льды спускались на Ю. Восточно-Европейской равнины до 48°30', а в США почти до 37° с. ш. Средние годовые температуры в Европе понижались приблизительно на 6-8°С; область развития многолетнемёрзлых пород распространялась до Южной Франции. Не менее суров был климат и во время верхнеплейстоценовых оледенений , хотя площади, занятые их льдами, были значительно меньшими.

Во время ледниковий резко изменялась зональность климата и растительности на суше не только из-за похолодания, но и вследствие изменения общей циркуляции атмосферы под воздействием огромных массивов материковых льдов. В прилежащих к ним областях климат иссушался и возникала широкая перигляциальная зона со своеобразным ландшафтом, сочетавшим признаки тундры и степи. Лесная зона умеренного пояса оттеснялась к Ю., суживалась, а местами и вовсе исчезала, так что перигляциальная тундро-степь прямо смыкалась с расположенными южнее настоящими степями. В этой обширной засушливой полосе формировались лёссы и лёссовидные породы и обитала "ледниковая" фауна, в состав которой входили вымершие к настоящему времени мамонты (Mammuthus) и шерстистые носороги (Coelodonta antiquitatis) и живущие в тундре овцебыки, северные олени, песцы, лемминги, полярные куропатки, заходившие на Ю. до предгорий Крыма и Северного Кавказа, а также явно степные и лесостепные формы - лошади, сайга, бизоны, большерогие олени и т.п. Ещё южнее, в зоне пустынь и полупустынь субтропического и тропического пояса, ледниковьям соответствовали фазы значительного увлажнения климата - плювиалы, во время которых возникали крупные пресные и солоноватоводные озёрные (ныне высохшие) водоёмы. Даже во внутренней области Сахары тогда проникали такие влаголюбивые животные, как гиппопотам и крокодилы.

Во время межледниковий восстанавливалась близкая к современной зональность, а климат становился иногда даже теплее современного. Так, в микулинское (земское) межледниковье Европы широколиста, леса произрастали на широте Вологды, где теперь располагается тайга. В зоне пустынь и полупустынь межледниковьям соответствовали фазы иссушения климата - ариды.

На образование материковых ледников расходовались огромные массы воды, заимствовавшейся из океанов и после стаивания льдов вновь в них возвращавшейся. Это вызывало общие, так называемые эвстатические, колебания уровня моря. Во время ледниковий он понижался по разным подсчётам на 85-120 м по отношению к современному, причём большая часть материковой отмели Северной Евразии и Северной Америки обсыхала (о чём свидетельствуют сохранившиеся в рельефе дна их окраинных морей затопленные речные долины, древние береговые линии и пр.). Британские острова неоднократно соединялись с материком Европы, а на месте Берингова пролива возникал "мост" суши между Азией и Америкой. По этому мосту в Евразию проникали некоторые североамериканские животные (например, северные олени), а в Северную Америку - некоторые евразиатские (например, мамонты). Через этот же мост не более 20-30 тыс. лет назад произошло и заселение Америки человеком.

В межледниковья уровень моря вновь приближался к современному или даже несколько превышал его, в связи с чем затапливались некоторые низменные окраины континентов. Но местами, например на С.-В. Европейской части СССР и на севере Западно-Сибирской равнины, наступание моря на сушу было связано с местными тектоническими опусканиями и по времени иногда совпадало с оледенениями. Поэтому здесь наряду с континентальными моренами встречаются и ледниково-морские отложения.

Изменения климата и колебания уровня моря в ослабленной форме происходили и в течение послеледникового, или голоценового, времени (т. е. за последние 10 тыс. лет). Так, наибольшее потепление климата в Европе имело место около 5-6 тыс. лет назад (так называемый послеледниковый климатический оптимум), после чего произошло некоторое похолодание.

В течение А. п. происходили мощные тектонические движения земной коры, особенно сильно проявившиеся в поясе альпийской складчатости Евразии, в зоне молодых складчатых структур по периферии Тихого океана и в горных системах Центральной Азии и юга Азиатской части СССР (Тянь-Шань, Алтай, Саяны и пр.). В течение значительной части плейстоцена по периферии Тихого океана, на Кавказе, в Исландии, Восточной Африке и некоторых других районах более интенсивно, чем ныне, проявлялся вулканизм.

С А. п. связана история возникновения и становления человека (см. Антропогенез).

Несмотря на изменения в очертаниях суши и моря, они в течение А. п. мало отличались от современных, и поэтому на поверхности нынешней суши преобладают континентальные антропогеновые отложения. Среди них различают ряд генетических типов, отличающихся динамикой накопления, строением и составом. Кроме упомянутых уже отложений ледникового комплекса и лёссов, широко распространены: Аллювий, Пролювий, озёрные отложения, эоловые пески и Элювий. В разных частях континентов они играют неодинаковую относительную роль (см. карту). Все эти отложения служат субстратом современных почв, являются важнейшими объектами инженерно-геологических изысканий, главным источником добычи многих строительных материалов (пески, гравий, кирпичные глины, и т.п.), торфа, с ними связаны россыпи благородных металлов, алмазов и других полезных минералов. Особенности теоретических проблем и своеобразие методики изучения отложений А. с. (п.) привели к выделению самостоятельной отрасли науки - четвертичной геологии (См. Четвертичная геология).

Лит: Герасимов И. П. и Марков К. К., Ледниковый период на территории СССР, М.-Л., 1939; Громов В. И., Палеонтологическое и археологическое обоснование стратиграфии континентальных отложений четвертичного периода на территории СССР, , М., 1960; Стратиграфия четвертичных (антропогеновых) отложений азиатской части СССР и их сопоставление с европейскими, "Тр. Геологического института АН СССР", 1960, в. 26; Марков К. К., Лазуков Г. И., Николаев В. А., Четвертичный период (Ледниковый период - антропогеновый период), т. 1-3, М., 1965-67; 3aмopiй П. К., Четвертиннi вiдклади Українськоi РСР, ч. 1, К., 1961; Флинт Р. Ф., Ледник и палеогеография плейстоцена, пер. с англ., М., 1963; Цейнер Ф., Плейстоцен, пер. с англ., М., 1963; Penk A., Brückner Е., Die Alpen im Eiszeitalter, Bd 1-3, Lpz., 1909; Woldstaadt P., Das Eiszeitalter, 2 Aufl., Bd 1-2, Stuttg., 1954-58; Charlesworth J. K., The quaternary era, v. 1-2, L., 1957.

Е. В. Шанцер.

Карта антропогенового оледенения.

Апериодическая система Искать примеры произношения

система, в которой Собственные колебания невозможны вследствие больших потерь энергии. При отклонении А. с. от положения равновесия она медленно возвращается к этому положению (рис.) и либо ни разу не проходит через него - кривая 1 (что происходит многократно при возвращении к положению равновесия в колебательных системах - пунктирная линия), либо проходит только один раз и затем возвращается к положению равновесия - кривая 2.

А. с. можно рассматривать как предельный случай, к которому приближаются колебательные системы по мере увеличения потерь энергии в них. Например, электрический колебательный контур превращается в А. с., когда электрическое сопротивление контура R, определяющее потери энергии в нём, достигает критическое значения

где С и L - соответственно ёмкость и индуктивность контура. А. с. применяют в устройствах автоматического регулирования, широкополосных усилителях электрических колебаний и т. д.

Рис. к статье Апериодическая система.

Балластная система Искать примеры произношения

судна, система трубопроводов и насосов, служащих для приёма и откачки жидкого судового Балласта. Балласт обычно принимают в балластные цистерны (отсеки двойного дна, Диптанки, сортовые и подпалубные цистерны, Форпик и Ахтерпик), в некоторых случаях - в топливные цистерны, а на танкерах - в грузовые цистерны. Производительность насосов Б. с. грузового судна обычно рассчитана на откачку всего балласта за 4-10 ч.

Биотехническая система Искать примеры произношения

совокупность взаимосвязанных и взаимозависимых биологических и технических систем или объектов. Например на борту космического корабля Б. с. состоит из подобранного, в зависимости от назначения и продолжительности полёта, Биокомплекса и технических средств, обеспечивающих оптимальные условия его функционирования. В состав технических средств входят подсистемы создания и распределения света, энергообеспечения, терморегулирования, а также космическая оранжерея, кухня, блоки регенерации воздуха и воды, минерализации отходов и т.д. Примерами Б. с. могут служить также электростимулятор сердца, манипулятор для работы в условиях, при которых соприкосновение человека с объектом управления нежелательно, и т.д. (см. Система "человек и машина" (См. Система человек и машина)).

Большая система Искать примеры произношения

управляемая система, рассматриваемая как совокупность взаимосвязанных управляемых подсистем, объединённых общей целью функционирования.

Примерами Б. с. могут служить: энергосистема, включающая природные источники энергии (реки, месторождения химического или ядерного горючего, солнечную и ветровую энергию), электростанции, преобразовательные подстанции, обслуживающий персонал, линии передачи энергии, потребителей энергии; производственное предприятие, куда входят источники снабжения сырьём и энергией, персонал, технологическое оборудование, средства его ремонта, техническая документация, финансы, сбыт продукции, учёт и отчётность; торговая сеть, включающая поставщиков товаров, склады, торговые точки, персонал, финансы, учёт и отчётность; живой организм с его системами питания, дыхания, движения, нервной и гуморальной регуляции, восстановления разрушающихся элементов (клеток) и воспроизведения дочерних организмов.

Понятие Б. с. возникло как выражение системного подхода к постановке и решению задач управления, свойственного кибернетике (См. Кибернетика). Оно введено не с целью классификации систем (деления их на "большие" и "небольшие"), а чтобы выделить способ рассмотрения поведения управляемых систем большого масштаба с учётом всего многообразия протекающих в них явлений. Характерные особенности Б. с.: наличие выделяемых частей (управляемых подсистем), участие в системе людей, машин и природной среды, наличие материальных, энергетических и информационных связей между частями систем, а также связей между рассматриваемой и другими системами (см. Система "человек и машина" (См. Система человек и машина), Автоматизация производства).

При системном подходе, с целью изучения и совершенствования Б. с. используются только такие методы, которые не игнорируют наличия тесной взаимосвязи между большим числом факторов, определяющих поведение рассматриваемой системы; учитывается большая или меньшая неопределённость поведения системы в целом и отдельных её частей как результат действия случайных факторов и участия в системе людей; принимается во внимание взаимовлияние системы и окружающей её среды; учитываются изменения во времени свойств системы и внешней среды. Такой подход эффективен при исследовании сложных технических, экономических и биологических систем, для которых оказываются бесплодными традиционные методы, основанные на поочерёдном изучении отдельных черт системы или отдельных явлений или на далеко идущем упрощении объекта рассмотрения.

Теория Б. с. развивается в направлении разработки следующих проблем:

1) Проблема языка, состоящая в формировании системы понятий, необходимых и достаточных для обсуждения вопросов, относящихся к Б. с., и для описания выявленных фактов и закономерностей, поскольку любое научное направление не может существовать и развиваться без языка, в терминах которого формулируются его идеи и методы.

2) Проблема модели, включающая все задачи построения идеализированных (упрощённых) моделей реальных систем, пригодных для теоретического и экспериментального изучения их свойств. Основные задачи здесь сводятся к тому, чтобы заменить реальные системы, исследовать которые невозможно вследствие их большой сложности, системами более простыми и доступными для теоретических исследований. Главная трудность состоит в том, что создаваемые модели должны быть достаточно сложными, чтобы их свойства в нужной мере соответствовали свойствам оригиналов, и в то же время настолько простыми, чтобы их можно было описать и решать нужные задачи, пользуясь составленными описаниями. Отыскание компромисса между этими противоречиями - часто очень трудная задача, которую пока удалось решить лишь для нескольких относительно узких классов систем.

3) Проблема декомпозиции - расчленения исходной системы на относительно обособленные части. Задача управления Б. с. существенно упрощается, если представить её в виде некоторого множества задач управления частями системы. При этом, однако, приходится преодолевать трудности, связанные с выбором способа декомпозиции, который обеспечивал бы необходимое упрощение процедуры решения, но не вызывал бы слишком больших погрешностей из-за отбрасывания некоторых связей при расчленении системы на части.

4) Проблема агрегирования - объединения нескольких показателей одним, сводным, с целью упрощения решения задач управления Б. с.; так же как и декомпозиция, имеет целью преодоление "барьера многомерности". Она заключается в выборе такого объединения показателей, которое существенно облегчило бы решение задач управления, но не приводило бы к недопустимым ошибкам, возникающим из-за уменьшения детальности описания системы.

5) Проблема стратегии - выбора способа оценки состояния системы и среды и выработки программы управляющих воздействий, обеспечивающей наилучшее достижение целей управления. Главные трудности в формировании стратегии управления связаны с необходимостью прогнозирования изменений системы и среды, которое принципиально не может быть точным.

Наряду с перечисленными фундаментальными проблемами создание и использование Б. с. требует решения ряда прикладных задач - функциональных и операционных. К функциональным задачам относятся мероприятия, обеспечивающие выполнение системой её назначения и поддержание её работоспособности. Операционные задачи направлены на решение вопросов планирования комплексов операций, управления ресурсами, запасами и развитием систем.

Управление Б. с. основывается на совместном участии в процессе людей и технических средств, основу которых составляют ЭВМ и средства сбора, передачи, представления и хранения информации. Управленческий персонал в совокупности с техническими средствами образует автоматизированную систему управления, которая выполняет функции: информационно-справочные, планирования, учёта, отчётности, оперативного управления, управления ресурсами и запасами. При этом выполнение формализуемых операций возлагается на ЭВМ, а принятие решений на основе неформальных методов - на руководителей.

Управление Б. с. строится, как правило, в виде иерархической системы, высший орган которой управляет несколькими подразделениями низшей ступени, каждой из которых, в свою очередь, подчинены подразделения ещё более низкой ступени и т.д. Такая структура управления позволяет использовать преимущества централизованных и децентрализованных систем и в значительной мере освободиться от их недостатков.

Характерная особенность современного направления развития техники управления Б. с. - слияние систем управления технологическими процессами и систем организационного управления в объединённые системы управления, в которых обеспечивается наиболее эффективное и экономное использование информации и технических средств.

Несмотря на небольшой опыт построения управления Б. с., основанного на научных методах, теория и техника Б. с. интенсивно развивается и получает распространение во многих отраслях народного хозяйства и обороны, в сфере обслуживания и административного управления, где требуется учёт большого числа факторов и переработка большого объёма информации.

Лит.: Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959; Кибернетику на службу коммунизму. Сб. ст., т. 1, М.- Л., 1961; Гуд Г. Х., Макол Р. Э., Системотехника. Введение в проектирование больших систем, пер. с англ., М., 1962; Бир Ст., Кибернетика и управление производством, пер. с англ., М., 1963; Бусленко Н. П., Математическое моделирование производственных процессов на цифровых вычислительных машинах, М., 1964; Глушков В. М., Введение в кибернетику, К., 1964; Греневский Г., Кибернетика без математики, пер. с польск., М., 196 4; Общая теория систем. Сб. ст., пер. с англ., М., 1966: Лернер А. Я., Начала кибернетики, М., 1967.

А. Я. Лернер.

Бюджетная система Искать примеры произношения

совокупность бюджетов государства, административно-территориальных единиц и бюджетов (смет) и счетов автономных в бюджетном отношении учреждений и фондов, основанная на экономических отношениях и юридических нормах. Характер Б. с. определяется социально-экономическим и политическим строем страны, а её организационное построение зависит от формы государственного и административного устройства (см. Бюджетное право).

Б. с. капиталистических стран. В унитарных государствах (например, в Великобритании, Франции и др.) Б. с. складывается из государственного бюджета и бюджетов местных органов самоуправления, в федеральных государствах - из центрального федерального бюджета, бюджетов членов федерации (в США - штатов, в Швейцарии - кантонов, в ФРГ - земель и т. д.) и местных бюджетов. Отдельные бюджеты противостоят друг другу, выражая противоречия между различными группировками буржуазии и классовые противоречия. В процессе роста концентрации производства, централизации капитала, усиления власти монополий происходит бюрократическая централизация Б. с. Всё большая часть источников доходов сосредоточивается в руках государства, которое определяет и главные статьи расходов, усиливается финансовая зависимость местных бюджетов от центра. Особенно характерно это для 50-60-х гг., когда местные бюджеты росли значительно быстрее, чем центральный бюджет. В США удельный вес бюджетов штатов и местных бюджетов в общей сумме бюджетных расходов увеличился с 29,0% в 1952/53 до 48,3% в 1968/69; во Франции доля местных бюджетов выросла за эти годы с 16,0 до 29,0%; в Италии с 20,0 до 29,0%. Местные бюджеты всё шире используются на развитие инфраструктуры (См. Инфраструктура), регулирование экономики, обеспечение монополий рабочей силой. Характерной чертой Б. с. капиталистических стран является наличие многочисленных автономных бюджетов отдельных организаций, внебюджетных смет и фондов, не подлежащих утверждению парламентами, что позволяет монополистическому капиталу бесконтрольно использовать средства государственной казны в своих интересах. Например, в США, кроме общего казначейского фонда и государственного бюджета, существуют внебюджетные фонды: Управления международного сотрудничества, Администрации гражданской авиации, Бюро ветеранов войны и другие так называемые кредитные фонды. К числу внебюджетных фондов относится также выручка от реализации казённого имущества и ценных бумаг, используемая для погашения части государственного долга. В 1966/67 объём внебюджетных ресурсов составил свыше 45 млрд. долл. при общей сумме федерального бюджета в 121,2 млрд. долл.

В развивающихся странах, ставших на путь борьбы за укрепление политической и экономической независимости, организация Б. с. подчинена задачам ликвидации остатков феодализма и последствий колониализма. Ввиду слабости национальной буржуазии и недостатка у неё капиталов важнейшие мероприятия в области экономики и культуры в этих странах (например, в ОАР, Индии, Бирме и др.) финансируются за счёт государственного бюджета. Одновременно с целью привлечения широких слоев населения к участию в решении национальных экономических и политических задач правительства этих стран проводят политику развития инициативы и средств бюджетов местных органов.

Б. с. социалистических стран. В СССР Б. с. включает союзный бюджет и государственные бюджеты союзных республик, которые в своей совокупности составляют государственный бюджет СССР. Это обеспечивает финансирование мероприятий, предусматриваемых планом развития народного хозяйства СССР, участие союзных республик в осуществлении планов, имеющих общесоюзное значение, всестороннее развитие экономики и культуры союзных республик и их взаимную помощь. В государственный бюджет СССР включается также бюджет государственного социального страхования, составляемый ВЦСПС и исполняемый профсоюзами. Государственные бюджеты союзных республик объединяют республиканские бюджеты, государственные бюджеты автономных республик и местные бюджеты. Каждый край, область, автономная область, национальный округ, район, город, поселковый Совет и сельский Совет имеют свой местный бюджет, утверждаемый соответствующим Советом депутатов трудящихся. Общее количество бюджетов, объединяемых Б. с. СССР, составляет почти 50 тыс.

Построение Б. с. СССР, бюджетные права и обязанности органов государственной власти и управления определяются Конституцией СССР, конституциями союзных и автономных республик, а также Законом о бюджетных правах Союза ССР и союзных республик, законами о бюджетных правах союзных республик и местных Советов депутатов трудящихся.

Рост бюджетов союзных республик (составляющих в 1970 44,2% государственного бюджета СССР против 24,2% в 1940) свидетельствует о повышении роли союзных республик в хозяйственном и культурном строительстве.

Доходы союзного бюджета образуются с основном за счёт платежей из прибыли предприятий, находящихся в ведении союзных органов, доходов от внешней торговли, взносов государственных предприятий по социальному страхованию, налога с оборота и др. общегосударственных доходов. Доходы республиканских и местных бюджетов состоят из платежей от прибыли предприятий и от др. имущества, находящегося в ведении республиканских и местных органов, а также из отчислений от общегосударственных доходов и налогов, передаваемых в эти бюджеты в порядке их регулирования (см. Бюджетное регулирование).

Направления и величина расходов различных бюджетов определяются задачами и функциями союзных, республиканских и местных органов власти, закрепленных Конституцией СССР и союзных республик, и др. законодательными актами. Из союзного бюджета СССР финансируются отрасли хозяйства и культуры, находящиеся в подчинении союзных органов и имеющие общесоюзное значение, а также расходы на оборону страны, общесоюзные органы государственной власти и управления. Из государственных бюджетов союзных республик финансируются отрасли, подчинённые республиканским органам, из местных бюджетов - в основном отрасли местного хозяйства и расходы социально-культурных учреждений, обслуживающих население отдельных местностей.

В др. социалистических странах Б. с. строится на тех же принципах, что и Б. с. в СССР. В 1949/50 в большинстве социалистических стран были проведены бюджетные реформы, в ходе которых осуществлена перестройка Б. с. на принципах демократического централизма и ленинской национальной политики. Многочисленные внебюджетные сметы и фонды, существовавшие до революций в этих странах, были объединены с государственным бюджетом, что имело важное значение для укрепления всей системы народно-хозяйственного и финансового планирования. В большинстве социалистических стран Б. с. складывается из 2 основных звеньев - Центрального бюджета и местных бюджетов . В 1968/69 произошёл переход Чехословакии к федеративному государству и бюджетному устройству. Теперь Б. с. в этой стране складывается из Центрального бюджета ЧССР, государственного бюджета Чехии, государственного бюджета Словакии, которые состоят, в свою очередь, из Центральных и местных бюджетов. В Югославии Б. с. состоит из бюджета федерации, бюджетов отдельных республик (членов федерации) и бюджетов местных органов. В интересах укрепления организации единства Б. с. в большинстве социалистических стран местные бюджеты последовательно объединяются между собой и с Центральным бюджетом, образуя единый государственный бюджет. Ведущая роль в государственном бюджете принадлежит Центральным бюджетам, на долю которых приходится в среднем около всех расходов государственного бюджета.

Как правило, задачей Центральных бюджетов является финансирование общегосударственных, хозяйственных и социально-культурных мероприятий и обороны страны. Местные бюджеты обеспечивают развитие местного хозяйства и социально-культурное и бытовое обслуживание населения. В последние годы расширяются права местных органов в области хозяйственного и культурного строительства, что ведёт к быстрому росту их бюджетов и повышению их доли в едином государственном бюджете.

Лит. см. при ст. Бюджет государственный.

А. М. Александров, В. В. Лавров.

Валютная система Искать примеры произношения

форма организации денежных отношений, охватывающая внутреннее денежно-кредитное обращение (см. Денежные системы) и сферу международных расчётов. Формируется сначала в рамках национальных хозяйств. С образованием мирового капиталистического рынка В. с. капиталистических стран превратилась в мировую В. с. В начале 20 в. мировая капиталистическая В. с. достигла своей высшей ступени развития. Её основой являлось золото. Золотой стандарт, утвердившийся в главных капиталистических странах, обеспечивал устойчивость денежного обращения, свободу переливов капиталов из страны в страну и международных платежей, неограниченный обмен национальной валюты и движение валютных курсов (См. Валютный курс) в пределах золотых точек (См. Золотые точки).

В период общего кризиса капитализма наступил кризис мировой капиталистической В. с. (см. Валютный кризис). Произошёл крах золотого стандарта. Золото перестало выполнять функции средства обращения и средства платежа; но, выполняя функции меры стоимости, средства образования сокровищ и мировых денег, оно остаётся основой мировой капиталистической В. с. Хотя большая часть международных расчётов осуществляется посредством банковских переводов, без участия наличных денег, золото остаётся главным средством окончательного урегулирования взаимных денежных требований и обязательств капиталистических стран, а размеры его запасов являются важным показателем устойчивости капиталистических валют и экономического потенциала отдельных стран. Официальные золотые резервы капиталистического мира в 1969 оценивались в 41 млрд. долл. и соответствовали св. 1/5 суммы совокупного импорта капиталистических стран. Несмотря на изъятие золота из обращения и запрещение гражданам в ряде стран, в том числе США и Великобритании, владеть золотом, у частных лиц в капиталистическом мире в 1969 находилось золота более чем на 20 млрд. долл. Установленное в капиталистических странах обращение неразменных банкнот и бумажных денег позволяет монополиям широко использовать инфляцию как средство дополнительной эксплуатации трудящихся. В связи с развитием безналичных расчётов и недостатком золота в международном платёжном обороте используется бумажная валюта. Наибольший удельный вес в нём в 1968 имел доллар США (25-30%), фунт стерлингов (20-25%), западногерманская марка (5-6%), французская франк (5-7%). Капиталистические государства вмешиваются в сферу международных расчётов, широко применяя валютные ограничения, платёжные соглашения, девальвации и т.п. Важную роль в мировой капиталистической В. с. играют Международный валютный фонд и Международный банк реконструкции и развития, решающее место в которых занимает американский и английский капитал. Ослабление позиций США и Великобритании на мировых рынках и инфляционное обесценение их валют подрывают значение доллара и фунта стерлингов как средств международных расчётов. В конце 1949 золотые резервы США составляли 24,6 млрд. долл., или 70% мировых резервов (без СССР), в конце 1968 они сократились до 10,9 млрд. долл. и равнялись 26% мировых резервов. Увеличились золотые резервы ФРГ, Франции, Италии и ряда других стран. Недоиспользование производительных сил в период общего кризиса капитализма (хроническая недогрузка производственного аппарата, массовая безработица) отражается на В. с.: увеличиваются излишки ссудных капиталов, что влияет как на внутренние рынки, так и на международные расчёты. В мировой капиталистической В. с. растет удельный вес операций, не связанных с торговлей. На них в 60-е гг. приходилось 40% международного платёжного оборота. Инфляции, изменение структуры международного платёжного оборота и другие факторы вызывают всё учащающиеся потрясения мировой капиталистической В. с.

Социалистическая В. с., утвердившаяся сначала в СССР, а затем в других социалистических странах, с образованием мирового социалистического рынка превратилась в мировую социалистическую В. с. Международные расчёты социалистических стран строятся на принципах равноправия, взаимной выгоды и развиваются планомерно на базе валютной монополии (См. Валютная монополия). Большинство их непосредственно связано с внешней торговлей. Основным средством международных расчётов между социалистическими странами как в торговых, так и в кредитных отношениях выступает переводный рубль. Важным звеном мировой социалистических В. с. является Международный банк экономического сотрудничества, созданный странами - членами СЭВ. Значительная часть расчётов между социалистическими странами по неторговым операциям осуществляется в национальных валютах. Постоянная комиссия СЭВ по валютно-финансовым вопросам разрабатывает совместные мероприятия и организует обмен опытом в целях дальнейшего укрепления и совершенствования социалистической В. с.

М. П. Миронов.

Выделительная система Искать примеры произношения

экскреторная система, совокупность органов, выводящих из организма животных и человека избыток воды, конечные продукты обмена, соли, а также ядовитые вещества, введённые в организм или образовавшиеся в нём. У простейших легкорастворимые экскреты (аммиак, мочевина) выводятся в окружающую среду путём диффузии (морские и паразитические формы) или с помощью сократительных вакуолей, выполняющих в основном функцию осморегуляции (См. Осморегуляция) (у пресноводных форм). У низших водных многоклеточных (губки, кишечнополостные) и у малоактивных морских животных (иглокожие) продукты обмена, в основном аммиак, диффундируют через поверхность тела и стенки полостей, связанных с окружающей средой. В частности выделительная функция у большинства беспозвоночных свойственна кишечнику.

В процессе эволюции дифференцируется специальная В. с. У низших червей (плоские, гастротрихи, киноринхи, коловратки, скребни, немертины), а также у приапулид и некоторых аннелид и у личинок полихет и моллюсков выделительные органы - протонефридии - система трубочек, открывающихся наружу порами, а внутри слепо заканчивающихся особыми полыми клетками, в которых находятся пучки длинных слипшихся ресничек, непрерывно совершающих колебательные движения ("мерцательное пламя") (рис. 1, 2). У кольчатых червей слепые концы протонефридиальных каналов заканчиваются группами бутылковидных клеток (соленоцитов), в узкой части которых находится по одному жгутику (рис. 3). У большинства кольчатых червей В. с. - метанефридии, т. е. метамерно расположенные парные трубчатые эктодермальные органы, открывающиеся в целомические мешки ресничной воронкой, а наружу - порой на поверхности следующего сегмента. Если в состав таких органов выделения входят и мезодермальные элементы, то говорят о нефромиксии. Выделительные органы, развивающиеся из мезодермы, - так называемые целомодукты - имеются у моллюсков: воронка открывается в околосердечную полость (остаток Целома), наружное отверстие - в мантийную полость. У ракообразных выделительные органы - извитые трубки, начинающиеся слепым "целомическим" мешочком и открывающиеся наружу у основания антенн или максилл (отсюда названия "антеннальные" и "максиллярные" железы) (рис. 4). Сходны выделительные органы у мечехвостов ("коксальные железы"), открывающиеся у основания 5-й пары ног. Открывающиеся наружу выделительные органы, через которые выводятся легко растворимые продукты обмена, типичны для водных беспозвоночных.

Обитание на суше, требующее экономии расхода влаги, вызывает изменение характера катаболитов - легко растворимые аммиак и мочевина заменяются трудно растворимыми гуанином (у паукообразных) или мочевой кислотой (у многоножек и насекомых). Выделительные органы типа целомодуктов из наземных беспозвоночных имеют только влаголюбивые формы - онихофоры и некоторые паукообразные (например, сенокосцы). Для наземных членистоногих характерен переход выделительной функции к стенкам кишечника (становятся иногда единственным выделительными органом, например, у ложноскорпионов) или чаще к мальпигиевым сосудам - длинным слепым выростам кишечника на границе средней и задней кишки, образующимся как выросты средней (паукообразные) или задней (насекомые, многоножки) кишки (рис. 5). Физиологическое преимущество мальпигиевых сосудов (при обитании в условиях дефицита влаги) в том, что через них легко выпадающие в осадок продукты обмена (мочевая кислота и др.) выводятся с мочевой жидкостью не наружу, а в заднюю кишку, где происходит всасывание воды; обезвоженные экскреты вместе с непереваренными остатками пищи выводятся через анальное отверстие наружу, чем достигается сохранение воды в теле животного.

Своеобразный тип выделения - отложение переведённых в труднорастворимую форму катаболитов (мочевая кислота и др.) в специальных клетках - "почках накопления" у нематод, в хлорагогенных клетках у дождевых червей, в межуточной ткани у пауков, в жировом теле у насекомых и многоножек, в печёночных выростах у мокриц и т.п., что тоже связано с экономией расхода воды при экскреции. Сходны с этими выделительными органами и экскретофоры - клетки, накапливающие экскреты и выбрасывающие их, например, в просвет кишечника (у ложноскорпионов, у восьмилучевых кораллов и др.).

Вторичный переход наземных беспозвоночных к жизни в воде, например, личинок насекомых, привёл к возвращению экскретов к характерному для водных животных типу (основной катаболит - аммиак) и к возрастанию осморегуляторной функции выделительных органов (мальпигиевы сосуды и кишечник).

Среди хордовых у оболочников и асцидий органами выделения служат мешочки накопления (у некоторых оболочников выделительные элементы не обнаружены). У ланцетника в жаберной области имеется около 100 пар так называемых нефромиксиев, которые одним отверстием открываются в околожаберную полость, а несколькими другими отверстиями (густо усаженными соленоцитами) связаны с полостью тела. У позвоночных органами выделения служат типичные целомодукты, скопления которых образуют Почки. От почек отходят мочеточники, которые впадают непосредственно в клоаку (См. Клоака) или в Мочевой пузырь, открывающийся наружу мочеиспускательным каналом. В эволюционном ряду позвоночных, как и при индивидуальном развитии высших позвоночных, наблюдается последовательная смена трёх типов почек. Первыми возникают передние, или головные, почки, называемые также предпочками (см. Пронефрос). Далее развиваются первичные, средние, или туловищные, почки - вольфовы тела (см. Мезонефрос). Последними появляются вторичные, задние, или тазовые, почки (см. Метанефрос). Целомодукты предпочки и первичной почки, обычно по паре на сегмент, возникают из так называемого нефротома. Часть нефротома, открывающаяся во вторичную полость тела, образует мерцательную воронку (нефростом). Против нефростомов предпочки в полости тела обычно развивается общий для всех воронок клубок кровеносных сосудов; через него фильтруются из крови жидкие продукты выделения (водные растворы солей), которые и поступают в воронки. Предпочка, имеющая сегментарное строение и тянущаяся вдоль всего туловища, сохраняется в продолжении всей жизни из круглоротых только у бделлостомы. У миног остатки пронефроса, образующие передний отдел почки, открываются в перикардиальную полость. У других позвоночных пронефрос служит лишь личиночным органом. Он особенно хорошо развит у личинок большинства рыб и земноводных. У всех рыб и земноводных во взрослом состоянии функционируют первичные почки. Канальцы их развиваются у эмбриона сходно с канальцами предпочки, отличаясь лишь тем, что открываются в готовый пронефрический проток, который получает с этого времени название первичнопочечного канала (рис. 7 и 8). У акуловых рыб этот канал расщепляется с переднего конца на два протока: Вольфов канал, служащий мочеточником первичной почки, и Мюллеров канал, вступающий в связь с остатками пронефроса и выполняющий у самок функцию яйцевода. У самцов земноводных вольфов канал находится в связи с половой железой и выполняет одновременно функции и мочеточника, и семяпровода. Для первичной почки характерно наличие мальпигиевых телец (См. Мальпигиевы тельца). У амниот вторичная почка заменяет функционирующую в эмбриональном периоде первичную почку, которая у взрослых самок вообще дегенерирует, а у самцов несёт функцию семяпроводящего аппарата и называется придатком семенника, или эпидидимисом. Эмбрионально вторичная почка образуется из специального мочеточника, вырастающего из заднего конца вольфова канала (рис. 9). Этот мочеточник имеет на конце несколько конечных разветвлений, в которые впадают почечные канальцы, возникающие из нефрогенной ткани. Извитые канальцы вторичной почки никогда не имеют воронок и начинаются боуменовой капсулой (См. Боуменова капсула). У млекопитающих и человека за капсулой следуют проксимальные извитые канальцы, далее прямые нисходящие и восходящие канальцы, образующие так называемую петлю Генле, и, наконец, дистальные извитые канальцы и затем соединительные трубки, впадающие в выводной проток. Расширенная часть мочеточника, откуда отходят его конечные разветвления в почку, получает назв. почечной лоханки. Три типа почек связаны между собой известными переходами. Так, даже в предпочке могут быть отдельные клубочки, свойственные первичной почке. В последней довольно часто исчезают воронки, и она становится очень похожей по строению на вторичную почку.

Наиболее вероятной теорией, объясняющей последовательную смену почек, является теория смены почечных канальцев. Сторонники этой теории считают, что у предков позвоночных была длинная почка, построенная по типу пронефроса. У их рыбообразных потомков на спинной стороне канальцев предпочки развились канальцы более совершенного типа - канальцы первичной почки, которые и вытеснили предпочечные канальцы на протяжении всего туловища, за исключением его переднего конца. У амниот канальцы вторичной почки, развивавшиеся в заднем отделе первичной почки, постепенно вытеснили последнюю. См. Выделение, Дыхания органы, Кожа.

Лит.: Холодковский Н. А., Учебник зоологии и сравнительной анатомии, 3 изд., СПБ, 1914; Машковцев А. А., Морфологическое и филогенетическое отношение мезонефроса к пронефросу, "Тр. Лаборатории эволюционной морфологии АН СССР", 1934, т. 2, в. 1; Руководство по зоологии, под ред. Л. А. Зенкевича, т. 1, М. - Л., 1937; Догель В. А., Сравнительная анатомия беспозвоночных, ч. 1, Л., 1938; Кравчинский Б. Д., Физиология почек, , 1949; Коштоянц Х. С., Основы сравнительной физиологии, 2 изд., т. 1, М. - Л., 1951; Беклемишев В. Н., Основы сравнительной анатомии беспозвоночных, 3 изд., т. 1-2, М., 1964; Курс зоологии, под ред. Б. С. Матвеева, 7 изд., т. 1-2. М., 1966.

М. С. Гиляров, А. Н. Дружинин.

Рис. 1. Выделительная система плоского червя Allocreadium isoporum: 1 - выделительное отверстие; 2 - мочевой пузырь; 3 - правый главный канал выделительной системы; 4 - концевые звездчатые клетки с мерцательным пламенем: 5 - ротовая присоска; 6 - брюшная присоска.

Рис. 2. Пламенная клетка ресничного червя: 1 - ядро; 2 - мерцательный жгутик.

Рис. 3. Слепой конец протонефридия кольчатого червя с сидящими на нём соленоцитами: 1 - соленоциты; 2 - выделительная трубка протонефридия; 3 - ядро; 4 - жгутик соленоцита.

Рис. 4. Антеннальная железа речного рака (в расправленном виде): 1 - целомический мешочек; 2 - "зелёный канал"; 3 - промежуточный канал; 4 - "белый канал"; 5 - мочевой пузырь; 6 - выводной проток; 7 - наружное отверстие железы.

Рис. 5. Органы выделения чёрного таракана: 1 - мальпигиевы сосуды; 2 и 3 - отделы передней кишки; 4 - средняя кишка; 5 - слепые придатки средней кишки; 6 и 7- отделы задней кишки.

Рис. 6. Развитие предпочки у позвоночных (А и Б - две последовательные стадии): 1 - сомит; 2 - предпочечный каналец и проток; 3 - боковая пластинка; 4 - вторичная полость тела; 5 - шейка сомита (или нефротом); 6 - воронка.

Рис. 7. Стереограмма головных и развивающихся первичных почек у позвоночных: 1 - аорта; 2 - вторичная полость тела; 3 - клубок; 4 - брыжейка; 5 - пронефрическая трубочка; 6 - пронефрический проток; 7 - полость нефротома (8); 9 - воронка; 10 - мезонефрическая трубочка; 11 - хорда; 12 - брюшина; 13 - миотом; 14 - спинной мозг.

Рис. 8. Стереограмма сформированных первичных почек у позвоночных: 1 - аорта; 2 - вторичная полость тела; 3 - половой валик; 4 - клубочек; 5 - брыжейка; 6 - мальпигиево тельце; 7 - мезонефрическая трубочка; 8 - миотом; 9 - воронка; 10 - хорда; 11 - брюшина; 12 - вольфов проток; 13 - спинной мозг.

Рис. 9. Схема развития мочеполовой системы у высших наземных позвоночных (А - исходная стадия; Б - мочеполовой аппарат самки; В - мочеполовой аппарат самца): 1 - предпочка(пронефрос); 2 - первичная почка (мезонефрос); 3 - вторичная почка (метанефрос); 4 - гонады; 5 - яичник; 6 - семенник; 7 - мочевой пузырь; 8 - вольфов канал; 9 - мюллеров канал; 10 - прямая кишка; 11 - мочеточник; 12 - мочеиспускательный канал; 13 - матка; 14 - придаток яичника (остаток первичной почки); 15 - придаток семенника (видоизмененная первичная почка).

Галактическая система Искать примеры произношения

то же, что Галактика.

Гастроваскулярная система Искать примеры произношения
(от Гастро... и лат. vasculum - небольшой сосуд)

кишечно-сосудистая система, усложнённая пищеварительная система некоторых кишечнополостных (медуз и гребневиков). Полость кишечника у них образует боковые впячивания, или каналы, благодаря которым Г. с. выполняет функции как переваривания пищи, так и распределения по телу продуктов пищеварения.

Геосинклинальная система Искать примеры произношения

высокоподвижный, линейно вытянутый и резко расчленённый на продольные прогибы и поднятия участок земной коры, в пределах которого в результате длительного развития кора океанического типа обычно преобразуется в континентальную (однако многие Г. с. закладывались на континентальной коре). Характеризуется повышенной скоростью, большим размахом и контрастностью вертикальных движений, интенсивной складчатостью, напряжёнными и разнообразными магматическими процессами, явлениями регионального метаморфизма и эндогенного оруденения. Геосинклинальные прогибы и поднятия Г. с. отделены друг от друга и от соседних структур земной коры глубинными разломами (См. Глубинные разломы).

Внешние части Г. с., возникающие обычно на глубоко и плавно погруженном краю соседних платформ (См. Платформа), называются (по Х. Штилле) миогеосинклиналями, а внутренние части, или внутренние прогибы, образующиеся на резко раздробленном и переработанном основании, - эвгеосинклиналями.

Земная кора Г. с. по своему строению носит переходный характер от океанической к континентальной, отличаясь большой неоднородностью. Под геосинклинальными прогибами она ближе к океаническим (имеет уменьшенную толщину при малой мощности "гранитного" слоя, местами полностью отсутствующего); в поднятиях кора ближе к континентальной (толщина её увеличена за счёт разрастания "гранитного" слоя).

В истории каждой Г. с. можно выделить ряд стадий. В начальной стадии геосинклинального этапа Г. с. испытывает общее погружение, сопровождающееся вулканизмом, накоплением осадков, и занята глубоководным морем (особенно глубоким над геосинклинальными прогибами). Миогеосинклинали отличаются отсутствием или слабым проявлением вулканизма, заполняясь преимущественно песчано-глинистыми отложениями т. н. нижней терригенной (аспидной, граувакковой) формации или карбонатными породами. Для эвгеосинклиналей на рассматриваемой стадии типичен напряжённый начальный вулканизм с массовыми подводными излияниями основных лав. Поэтому эвгеосинклинали заполняются главным образом вулканогенными и вулканогенно-осадочными толщами. Из собственно осадочных пород для них в это время характерны кремнистые сланцы и яшмы. Вдоль ограничивающих эвгеосинклинали разломов внедряются интрузии основных и ультраосновных глубинных магматических пород. Состав последних, а также приуроченность к Г. с. глубокофокусных землетрясений указывают на то, что эти разломы уходят глубоко в мантию Земли (См. Мантия Земли). В следующую - предорогенную - стадию, или стадию зрелости, геосинклинали, составляющие Г. с., расчленяются (см. рис. в ст. Геосинклинальный пояс) вторичными (новообразованными) поднятиями - геоантиклиналями (по А. Д. Архангельскому), или интрагеоантиклиналями (по М. М. Тетяеву и В. В. Белоусову), на узкие дочерние прогибы - интрагеосинклинали (по М. М. Тетяеву и В. В. Белоусову), заполняющиеся карбонатными породами, ритмичнослоистыми толщами флиша, а в эвгеосинклиналях - продуктами продолжающейся вулканической деятельности уже преимущественно андезитового состава. Развитие этого процесса сопровождается интрузиями и складчатыми деформациями. Далее наступает перелом в развитии Г. с., который выражается в переходе к её общему воздыманию (общая инверсия тектонического режима, по В. В. Белоусову). Г. с. вступает в орогенный этап, или этап горообразования. С ним совпадает максимум складко- и надвигообразования, возникновение гранитоидных массивов (батолитов), региональный метаморфизм горных пород и наиболее интенсивное эндогенное рудообразование. Г. с. преобразуются в складчатые (складчато-глыбовые, складчато-покровные) горные сооружения, структура которых представляет собой систему сложных складок - мегантиклинориев и мегасинклинориев. Между ними закладываются межгорные прогибы (См. Межгорный прогиб), а на границах складчатой системы с платформой - передовые прогибы (См. Передовой прогиб) (или краевые прогибы). Те и другие заполняются обломочными продуктами разрушения растущих гор. В начальную - раннеорогенную - стадию орогенного этапа заполнение межгорных и передовых прогибов происходит главным образом песчано-глинистым материалом, отлагающимся в морских или лагунных условиях (формация нижней молассы). В позднеорогенную стадию они сменяются грубыми песчаниками и конгломератами континент, происхождения (формация верхней молассы). Растущие горные сооружения раскалываются сбросами, взбросами и крутыми надвигами с образованием внутренних грабенообразных впадин и наземными излияниями сначала более кислых (липариты, дациты), затем всё более основных (от андезитов до базальтов) лав (субсеквентный и финальный, по Х. Штилле, или орогенный, вулканизм). С окончанием последнего, орогенного этапа Г. с. превращается из участка земной коры высокой подвижности в тектонически стабильную складчатую систему - основание будущей платформы. Этап, предшествующий заключительному орогенезу, получил название главного геосинклинального этапа.

Г. с. различаются по времени возникновения, а главное, по времени завершения геосинклинального развития и превращения в складчатые системы.

Наиболее распространённые возрастные генерации складчатых систем: докембрийские (см. Докембрийские эпохи складчатости); раннепалеозойские (каледонские, или каледониды); позднепалеозойские (герцинские, или герциниды); среднемезозойские (киммерийские) и кайнозойские (альпийские). Часть последних не успела ещё полностью завершить геосинклинальный цикл развития.

Смежные и более или менее одновременно развивающиеся Г. с. входят вместе со срединными массивами в состав геосинклинальных областей, а последние образуют обширные геосинклинальные пояса.

К Г. с. и возникшим из них складчатым системам приурочено преимущественно распространение ряда важнейших видов полезных ископаемых. К внутренним их частям тяготеют месторождения асбеста, хромита, магнитных железняков, медных и полиметаллических (колчеданных) руд и др.; к внешним - месторождения руд меди, золота, олова, вольфрама, молибдена, свинца, цинка и т.д. С орогенным вулканизмом связаны месторождения золота, серебра, полиметаллических руд, серы, ртути, мышьяка, сурьмы и др. В передовых и межгорных прогибах располагаются крупнейшие месторождения нефти, газа, ископаемых углей, каменной и калийных солей и др. См. также Геосинклинальная область, Геосинклинальный пояс и Геосинклиналь.

Лит. см. при ст. Геосинклиналь.

В. Е. Хаин, М. В. Муратов.



Словари, в которых найден искомый текст:
 Большая советская энциклопедия (225)
 Толковый словарь Ефремовой (1)
 Словарь иностранных слов (1)
 Современный толковый словарь (150)
 Толковый словарь русского языка Ушакова (2)
 Кольер (78)
 Словарь медицинских терминов (88)
 Толковый словарь живого великорусского языка В.Даля (1)
 Словарь Ожегова (2)


Примеры употребления слова "СИСТЕМА" в русскоязычной прессе:

1.   Птица находилась несколько часов в темноте, без воды, корма и самое главное - без воздуха: система вентиляции работает от электросети. Мы пытались спасти поголовье, вручную вытаскивали клетки на улицу, нам помогали солдаты Таманской дивизии и местные жители, но потерь избежать не удалось. (АиФ, 2005-06-01)

2.   Весь вечер и ночь коровы мычали от переполнявшего их молока - на фермах давно действует автоматизированная система доения, которая также работает "от розетки". Авария едва не прекратила деятельность Ступинского металлургического комбината. (АиФ, 2005-06-01)

3.   Правда, не берут, опять же, только те, кому не дают. Система откатов практически легально работает в бизнесе. (АиФ, 2005-06-01)

4.   Будет ли такая же система во "Внуково"? (АиФ, 2005-06-01)

5.   По словам Евгения Жибурта, директора Федерального центра крови Минздравсоцразвития России, резервное питание на станциях есть, но оно не помогает при глобальном отключении: "Автономная система энергоснабжения есть только на городской станции переливания крови, в немецкой холодильной камере на 30 тонн". (АиФ, 2005-06-01)

Еще примеры >>

Недвижимость в Испании
Еще>>